DOI QR코드

DOI QR Code

OBTUSE MATRIX OF ARITHMETIC TABLE

  • Eunmi Choi (Department of Mathematics, HanNam University)
  • Received : 2024.02.07
  • Accepted : 2024.05.21
  • Published : 2024.05.31

Abstract

In the work we generate arithmetic matrix P(c,b,a) of (cx2 + bx+a)n from a Pascal matrix P(1,1). We extend an identity P(1,1))O(1,1) = P(1,1,1) with an obtuse matrix O(1,1) to k degree polynomials. For the purpose we study P(1,1)kO(1,1) and find generating polynomials of O(1,1)k.

Keywords

Acknowledgement

This work was supported by 2023 Hannam University Research Fund.

References

  1. L. Aceto, D. Trigiante, The matrices of pascal and other greats, Amer. Math. Monthly, 108 (2001) 232-245. https://doi.org/10.1080/00029890.2001.11919745
  2. E. Horowitz, S. Sahni, The computations of powers of symbolic polynomials, SIAM J. Comput., 4 (1975) 201-208. https://doi.org/10.1137/0204016
  3. J. Jo, Y. Oh, E. Choi, Arithmetic matrix of quadratic polynomial with negative exponent by Pascal matrix, J. of Alg. and Appl. Math., 17 (2019) 67-90.
  4. D. Loeb, A generalization of the binomial coefficients, Discrete Math., 105 (1992) 143-156. https://doi.org/10.1016/0012-365X(92)90138-6
  5. OEIS Foundation Inc. (2024) Entry A122888, https://oeis.org/A122888.
  6. C. Ponder, Parallel multiplication and powering of polynomials. J. Symbolic Computation, 11 (1991) 307-320. https://doi.org/10.1016/S0747-7171(08)80108-3