DOI QR코드

DOI QR Code

INTRODUCTION TO MODELS OF OPINION DYNAMICS AND THEIR EXAMPLES

  • Sung-hwan Kim (Division of Public Affairs and Police Administration, Dongguk University) ;
  • Ji Eun Kim (Department of Mathematics, Dongguk University)
  • Received : 2024.05.23
  • Accepted : 2024.05.27
  • Published : 2024.05.31

Abstract

This paper aims to provide a general review of Opinion Dynamics (OD) and its related models, along with application examples for special agents. We will discuss special classes of social actors, such as informed actors, opponents, and extremists, in the context of opinion dynamics. Our main objective is to determine the extent to which opinion dynamics, as a mathematical sociology, relates to social reality. To achieve this, we present key elements of mathematical sociology in Opinion Dynamics, which we then apply to real socioeconomic phenomena using modeling assumptions and mathematical formulations.

Keywords

Acknowledgement

This study was supported by the Dongguk University Research Fund.

References

  1. R. P. Abelson, Mathematical Models in Social Psychology, Adv. Exp. Soc. Psy. 3, Elsevier, Amsterdam, The Netherlands, 1967.
  2. M. Afshar and M. Asadpour, Opinion Formation by Informed Agents, J. Artif. Soc. Soc. Simul. 13 (2010), 1-5.
  3. A. Alaali, M. A. Purvis, and B. T. R. Savarimuthu, Vector Opinion Dynamics: An Extended Model for Consensus in Social Networks, Proc. IEEE/WIC/ACM Inter. Conf. Web Int. Int. Agent Tech. Sydney, Australia, 3 (2008), 394-397.
  4. A. T. Bernardes, D. Stauffer, and J. Kert'esz, Election Results and the Sznajd Model on Barabasi Network, Eur. Phys. J. B-Condens. Matter Complex Syst. 25 (2002), 123-127.
  5. P. Clifford and A. Sudbury, A Model for Spatial Conflict, Biometrika 1973, 60, 581-588. https://doi.org/10.1093/biomet/60.3.581
  6. J. E. Cohen, J. Hajnal, and C. M. Newman, Approaching Consensus Can Be Delicate When Positions Harden, Stoch. Process. Their Appl. 22 (1986), 315-322. https://doi.org/10.1016/0304-4149(86)90008-6
  7. M. H. DeGroot, Reaching a Consensus, J. Am. Stat. Assoc. 69 (1974), 118-121. https://doi.org/10.1080/01621459.1974.10480137
  8. G. Deffuant, F. Amblard, G. Weisbuch, and T. Faure, How Can Extremism Prevail? A Study Based on the Relative Agreement Interaction Model, J. Artif. Soc. Soc. Simul. 5 (2002), 1.
  9. J. C. Dittmer, Consensus Formation under Bounded Confidence, Nonlinear Anal. Theory Methods Appl. 47 (2001), 4615-4621. https://doi.org/10.1016/S0362-546X(01)00574-0
  10. J. R. P. French, A Formal Theory of Social Power, Psychol. Rev. 63 (1956), 181-194. https://doi.org/10.1037/h0046123
  11. N. Friedkin and E. Johnsen, Social Influence Networks and Opinion Change, Adv. Group Process. 16 (1999), 1-29.
  12. N. Friedkin and E. Johnsen, Social Influence and Opinions, J. Math. Sociol. 15 (1990), 193-206. https://doi.org/10.1080/0022250X.1990.9990069
  13. S. Galam, Real Space Renormalization Group and Totalitarian Paradox of Majority Rule Voting, Phys. A Stat. Mech. Its Appl. 285 (2000), 66-76. https://doi.org/10.1016/S0378-4371(00)00272-7
  14. S. Galam, Application of Statistical Physics to Politics, Phys. A Stat. Mech. Its Appl. 274 (1999), 132-139. https://doi.org/10.1016/S0378-4371(99)00320-9
  15. S. Galam, Majority Rule, Hierarchical Structures, and Democratic Totalitarianism: A Statistical Approach, J. Math. Psychol. 30 (1986), 426-434. https://doi.org/10.1016/0022-2496(86)90019-2
  16. R. Hegselmann and A. Flache, Understanding Complex Social Dynamics: A Plea for Cellular Automata Based Modelling, J. Artif. Soc. Soc. Simul. 1 (1998), 1.
  17. R. A. Holley and T. M. Liggett, Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model, Ann. Probab. 3 (1975), 643-663.
  18. E. Ioannidis, N. Varsakelis, and I. Antoniou, Change Agents and Internal Communications in Organizational Networks, Phys. A Stat. Mech. Its Appl. 528 (2019), ID 121385.
  19. P. L. Krapivsky and S. Redner, Dynamics of Majority Rule in Two-State Interacting Spin Systems, Phys. Rev. Lett. 90 (2003), ID 238701.
  20. K. Lehrer, Social Consensus and Rational Agnoiology, Synthese 31 (1975), 141-160. https://doi.org/10.1007/BF00869475
  21. J. Lorenz, Continuous Opinion Dynamics under Bounded Confidence: A Survey, Int. J. Mod. Phys. C 18 (2007), 1819-1838. https://doi.org/10.1142/S0129183107011789
  22. A. C. R. Martins, Discrete Opinion Models as a Limit Case of the CODA Model, Phys. A Stat. Mech. Its Appl. 395 (2014), 352-357. https://doi.org/10.1016/j.physa.2013.10.009
  23. A. C. R. Martins, Trust in the CODA Model: Opinion Dynamics and the Reliability of Other Agents, Phys. Lett. A 377 (2013), 2333-2339. https://doi.org/10.1016/j.physleta.2013.07.007
  24. A. C. R. Martins, Continuous Opinions and Discrete Actions in Opinion Dynamics Problems, Int. J. Mod. Phys. C 19 (2008), 617-624. https://doi.org/10.1142/S0129183108012339
  25. S. Schweighofer, D. Garcia, and F. Schweitzer, An Agent-Based Model of Multi-Dimensional Opinion Dynamics and Opinion Alignment, Chaos Interdiscip. J. Nonlinear Sci. 30 (2020), ID 093139.
  26. D. Stauffer, The Sznajd Model of Consensus Building with Limited Persuasion, Int. J. Mod. Phys. C 13 (2002), 315-317. https://doi.org/10.1142/S0129183102003140
  27. K. Sznajd-Weron, Sznajd Model and Its Applications, Acta Phys. Pol. B 36 (2005), 2537-2547.
  28. K. Sznajd-Weron and J. Sznajd, Opinion Evolution in Closed Community, Int. J. Mod. Phys. C 11 (2000), 1157-1165. https://doi.org/10.1142/S0129183100000936
  29. D. Tsintsaris, M. Tsompanoglou, and E. Ioannidis, Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business, Mathematics, 12 (2024), no. 8, ID 1141.
  30. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 1994.
  31. J. Zhang and Y. Hong, Separation time on bounded confidence opinion models, 25th Chinese Control and Decision Conference (CCDC), IEEE, 2013.