DOI QR코드

DOI QR Code

Changes in Growth and Physiological Characteristics of Iris laevigata Fisch. by Shading Treatment

차광처리가 제비붓꽃의 생장 및 생리적 특성에 미치는 영향

  • Seungju Jo (DMZ Botanic Garden, Korea National Arboretum) ;
  • Dong-Hak Kim (Garden and Plant Resource Division, Korea National Arboretum) ;
  • Eun-Ju Cheong (Department of Forest Environmental System, Kangwon National University) ;
  • Jung-Won Yoon (DMZ Botanic Garden, Korea National Arboretum)
  • 조승주 (국립수목원, DMZ산림생물자원보전과) ;
  • 김동학 (국립수목원, 정원식물자원과) ;
  • 정은주 (강원대학교, 산림환경시스템학과) ;
  • 윤정원 (국립수목원, DMZ산림생물자원보전과)
  • Received : 2024.01.29
  • Accepted : 2024.03.14
  • Published : 2024.04.01

Abstract

In this study, we investigated the growth and physiological responses of Iris laevigata Fisch. to shading treatments in order to suggest optimal light conditions for ex-situ conservation of the northern lineage plants. For this purpose, a control plant receiving full sunlight and different shading treatments (50%, 75%, 95%) were installed, and leaf mass per area, chlorophyll content and fluorescence response, and photosynthetic characteristics were investigated. I. laevigata developed leaves with higher photosynthetic efficiency to adapt to lower light intensity as shading levels increased. Chlorophyll content increased with increasing shading levels, and leaf mass per area decreased with increasing leaf area. The chlorophyll fluorescence responses Fv/Fm and NPQ did not change with shading, and the activity of the carbon fixation system did not differ between treatments. I. laevigata exhibited a light-saturation point equivalent to that of sun plants and maintained photosynthetic capacity similar to that of controls up to 75% shading. The apparent quantum yield of I. laevigata decreased significantly at 95% shading, indicating adaptation to lower light conditions. It seems that the photosynthetic capacity of I. laevigata decreases when grown under 95% shading level compared to full sunlight, and it is judged that the longer the light is restricted by continuous shading, the more unfavorable the growth will be.

본 연구에서는 북방계 식물 제비붓꽃의 현지외 보전에 필요한 생육 적정 광조건을 제시하기 위하여 차광처리에 따른 제비붓꽃의 생장과 생리적 반응을 조사하였다. 전천광을 수광하는 대조구와 서로 다른 차광처리구(50%, 75%, 95%)를 설치하고 엽면적당 건중량, 엽록소 함량과 형광 반응, 광합성 특성을 조사하였다. 제비붓꽃은 차광수준이 강해질수록 낮은 광도에 적응하기 위하여 광합성 효율이 높아진 잎이 형성되었다. 차광수준이 높아질수록 엽록소 함량이 증가하였고, 엽면적이 증가하면서 엽면적당 건중량은 감소하였다. 차광처리에 의해 엽록소 형광 반응 Fv/Fm과 NPQ는 변화하지 않았고, 탄소고정계의 활성 또한 처리 간에 차이가 없었다. 제비붓꽃은 양지식물에 해당하는 광포화점을 나타냈고, 75% 차광수준까지 광합성 능력을 대조구와 비슷한 수준으로 유지하였다. 제비붓꽃의 순양자수율은 95% 차광처리에서 현저히 감소하여 낮은 광조건에 적응한 상태를 보였다. 제비붓꽃은 전천광 대비 95% 차광수준에서 생육할 시 광합성 능력이 저하하는 것으로 보이며, 차광 상태를 지속하여 광을 제한할수록 생육이 불리할 것으로 판단된다.

Keywords

References

  1. Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59(2008):89-113.  https://doi.org/10.1146/annurev.arplant.59.032607.092759
  2. Borkowska, B. 2002. Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endo-mycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol. Plant. 24(4):365-370.  https://doi.org/10.1007/s11738-002-0031-7
  3. Caemmerer, S.V. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta An International Journal of Plant Biology 153(4):376-387.  https://doi.org/10.1007/BF00384257
  4. Cheng, T., B. Rivard, A.G. Sanchez-Azofeifa, J.B. Feret, S. Jacquemoud and S.L. Ustin. 2014. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 87(2014):28-38.  https://doi.org/10.1016/j.isprsjprs.2013.10.009
  5. Cho, Y., H. Kim, E. Jo, D. Oh, H. Jeong, C. Yoon., K. An and J. Cho. 2021. Effect of partial shading by agrivoltaic systems panel on electron transport rate and non-photochemical quenching of crop. Korean J. Agric. For Meteorology 23(2): 100-107 (in Korean). 
  6. Crane, P. 2020. Conserving our global botanical heritage: the PSESP plant conservation program. Plant Divers. 42(4):319-322.  https://doi.org/10.1016/j.pld.2020.06.007
  7. Cun, Z., X.Z. Xu, J.Y. Zhang, S.P. Shuang, H.M. Wu, T.X. An and J.W. Chen. 2023. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. Front. Plant Sci. 13(2023):1095726. 
  8. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Funct. Plant Biol. 14(1):69-79. https://doi.org/10.1071/PP9870069
  9. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Biol. 33(1):317-345.  https://doi.org/10.1146/annurev.pp.33.060182.001533
  10. Gantsetseg, A., S.Y. Jung, W.B. Cho, E.K. Han, S. So and J.H. Lee. 2020. Definition and species list of northern lineage plants on the Korean Peninsula. Korean Herb. Med. Inf. 8 (2):183-204. 
  11. Genty, B., J. Harbinson and N.R. Baker. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non respiratory conditions. Plant Physiol. Biochem. 28(1):1-10. 
  12. Ghasemzadeh, A., H.Z. Jaafar and A. Rahmat. 2010. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International J. Mol. Sci. 11(11):4539-4555.  https://doi.org/10.3390/ijms11114539
  13. Hiscox, J.D. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57(12):1332-1334.  https://doi.org/10.1139/b79-163
  14. Kim, D.H., S. Son, J.Y. Jung, J.C. Lee and P.G. Kim. 2022. Photosynthetic characteristics and chlorophyll content of Cypripedium japonicum in its natural habitat. Forest Sci. Technol. 18(4):160-171.  https://doi.org/10.1080/21580103.2022.2120544
  15. Kim, G.N., S.H. Han, D.H. Kim, C.W. Yun and S.J. Shin. 2013. Optimum light intensity and fertilization effects on physiological activities of Forsythia saxatilis. Jour. Korean For. Soc. 102(3):372-381 (in Korean). 
  16. Kim, J.K., D.C. Jang, H.M. Kang, K.J. Nam, M.H. Lee, J.K. Na and K.Y. Choi. 2021. Effects of light intensity and electrical conductivity level on photosynthesis, growth and functional material contents of Lactuca indica L. 'Sunhyang' in hydroponics. J. Bio-Env. Con. 30(1):1-9 (in Korean).  https://doi.org/10.12791/KSBEC.2021.30.1.001
  17. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Korean J. Agric. For Meteorology 3(2):126-133 (in Korean). 
  18. Kim, P.G., S.H. Kim, S.M. Lee, C.H. Lee and E.J. Lee. 2002. Adaptability to the water relations of Populus alba x P. glandulosa in 'Kimpo' waste landfills. Jour. Korean For. Soc. 91(3):279-286 (in Korean).  https://doi.org/10.3346/jkms.2002.17.2.279
  19. Kim, P.G., Y.S. Lee, D.J. Chung, S.Y. Woo, J.H. Sung and E.J. Lee. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. Jour. Korean For. Soc. 90(4):476-487 (in Korean). 
  20. Kim, S.H., J.H. Saung, Y.K. Kim and P.G. Kim. 2008. Photosynthetic responses of four oak species to changes in light environment. Korean J. Agric. For. Meteorology 10(4):141-148 (in Korean).  https://doi.org/10.5532/KJAFM.2008.10.4.141
  21. KNA (Korea National Arboretum). 2022. The National Red List of Vascular Plants in Korea. Korea National Arboretum, Pocheon, Korea (in Korean). 
  22. Kong, W.S. 2005. Selection of vulnerable indicator plants by global warming. Asia-Pacific J. Atm. Sci. 41(2):263-273 (in Korean). 
  23. Larcher, W. 1995. Physiological Plant Ecology. SpringerVerlag, Heidelberg, Germany. 
  24. Lawson, T., S. Lefebvre, N.R. Baker, J.I. Morison and C.A. Raines. 2008. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J. Exp. Bot. 59(13):3609-3619.  https://doi.org/10.1093/jxb/ern211
  25. Lee, H.Y., M.H. Baek, S.C. Park, Y.I. Park and J.S. Kim. 2002. Effects of low dose γ-radiation on photosynthesis of red pepper (Capsicum annuum L.) and the reduction of photoinhibition. Korean J. Environ. Agric. 21(2):83-89 (in Korean).  https://doi.org/10.5338/KJEA.2002.21.2.083
  26. Lee, K.C., M.H. Wang and J.M. Song. 2013. Physiological responses of Bupleurum latissimum Nakai, endangered plants to changes in light environment. J. Bio-Env. Con. 22(2):154-161 (in Korean).  https://doi.org/10.12791/KSBEC.2013.22.2.154
  27. Lee, K.C., S.K. Han, Y.H. Kwon, S.R. Jeon, C.W. Lee, D.J. Seo and W.G. Park. 2019. Effects of shading treatments on growth and physiological characteristics of Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara seedling. Korean J. Medicinal Crop Sci. 27(1):30-37 (in Korean).  https://doi.org/10.7783/KJMCS.2019.27.1.30
  28. Lee, S.G., H.Y. Kim, K.C. Lee and J.J. Ku. 2015. Effects of seed storage methods and shading on seed germination and seedling growth of endangered species, Iris dichotoma and Iris setosa. Jour. Korean For. Soc. 104(1):60-66 (in Korean).  https://doi.org/10.14578/jkfs.2015.104.1.60
  29. Lichtenthaler, H.K., C. Buschmann and M. Knapp. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosyntetica International Journal for Photosynthesis Research 43(3):379-393.  https://doi.org/10.1007/s11099-005-0062-6
  30. Martins, S.C., W.L. Araujo, T. Tohge, A.R. Fernie and F.M. DaMatta. 2014. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield. PLoS One. 9(4):e94862. 
  31. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51(345):659-668.  https://doi.org/10.1093/jxb/51.345.659
  32. Ministry of Environment. 2024. URL: https://species.nibr.go.kr/endangeredspecies/rehome/redlist/redlist_view.jsp?link_gbn=ex_search&rlcls_sno=374&&page_count=. Accessed 02 Jan 2024. 
  33. NIBR (National Institute of Biological Resources). 2012. Red Data Book of Endangered Vascular Plants in Korea. National Institute of Biological Resources, Incheon, Korea (in Korean). 
  34. Park, M.J., Y.O. Seo, H.S. Choi, B.K. Choi, E.Y. Im, J.E. Yang and C.B. Lee. 2021. Effects of artificial shading on flowering and growth of Maesa japonica seedlings. Korean J. Plant Res. 34(5):462-469 (in Korean). 
  35. Rascher, U., M. Liebig and U. Lttge. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 23(12):1397-1405.  https://doi.org/10.1046/j.1365-3040.2000.00650.x
  36. Rosenqvist, E. and O. van Kooten. 2003. Chlorophyll Fluorescence: A General Description and Nomenclature. In Practical Applications of Chlorophyll Fluorescence in Plant Biology. Springer, Boston, MA (USA). 
  37. Ruban, A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170(4):1903-1916.  https://doi.org/10.1104/pp.15.01935
  38. Sim, J.K. and J.H. Kim. 2002. A systematic study of the genus Iris series Chinensis Lawrence (Iridaceae) based on RAPD analysis. Kor. J. Plant Tax. 32(1):95-108 (in Korean).  https://doi.org/10.11110/kjpt.2002.32.1.095
  39. Skalova, H., F. Krahulec, H.J. During, V. Hadincova, S. Pechackova and T. Herben. 1999. Grassland canopy composition and spatial heterogeneity in the light quality. Plant Ecol. 143(2):129-139.  https://doi.org/10.1023/A:1009899803229
  40. Smith, P. and V. Pence. 2017. The Role of Botanic Gardens in ex situ Conservation. In Blackmore, S., and S. Oldfield (eds.), Plant Conservation Science and Practice: The Role of Botanic Gardens. Cambridge University Press, Cambridge, UK. 
  41. Strasser, R.J., A. Srivastava and M. Tsimilli-Michael. 2000. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples: Probing Photosynthesis: Mechanisms, Regulation and Adaptation, 1st ed. CRC Press, Florida, USA. 
  42. Sung, J.H., S.M. Je, S.H. Kim and Y.K. Kim. 2010. Effect of calcium chloride (CaCl2) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. Jour. Korean For. Soc. 99(6):922-928 (in Korean). 
  43. Sung, J.W., Y.G. Song, H. Koo, H.H. Kim, S.M. Byun, C.R. Lee, S.G. Park and K.C. Lee. 2023. Physiological and growth responses of M. thunbergii to different levels of fertilization. Korean J. Plant Res. 36(2):172-180 (in Korean). 
  44. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144(3):307-313.  https://doi.org/10.1016/S0176-1617(11)81192-2
  45. Werf, A., A. Kooijman, R. Welschen and H. Lambers. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol. Plant. 72(3):483-491.  https://doi.org/10.1111/j.1399-3054.1988.tb09155.x
  46. Whitlock, R., H. Hipperson, D.B.A. Thompson, R.K. Butlin and T. Burke. 2016. Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol. Conserv. 203:134-142.  https://doi.org/10.1016/j.biocon.2016.08.006