과제정보
This work was financially supported by the Beijing Innovation Team of the Modern Agricultural Research System BAIC08-2024-SYZ03 and Science and Technology innovation support program of Beijing University of Agriculture (BUA-HHXD2023009).
참고문헌
- Jiang H, Zhang XW, Liao QL, Wu WT, Liu YL, Huang WH. Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small 2019;15:1901787. https://doi.org/10.1002/smll.201901787
- Kim HO, Yeom MJ, Kim JH, et al. Reactive oxygen species-regulating polymersome as an antiviral agent against influenza virus. Small 2017;13:1700818. https://doi.org/10.1002/smll.201700818
- Schurmann N, Forrer P, Casse O, et al. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nat Microbiol 2017;2:16268. https://doi.org/10.1038/nmicrobiol.2016.268
- Henry C, Loiseau L, Vergnes A, et al. Redox controls RecA protein activity via reversible oxidation of its methionine residues. eLife 2021;10:e63747. https://doi.org/10.7554/eLife.63747
- Diwanji N, Bergmann A. Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 2020;11:3631. https://doi.org/10.1038/s41467-020-17399-8
- Hunyadi A. The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 2019;39:2505-33. https://doi.org/10.1002/med.21592
- Cafe SL, Nixon B, Dun MD, Roman SD, Bernstein IR, Bromfield EG. Oxidative stress dysregulates protein homeostasis within the male germ line. Antioxid Redox Signal 2020;32:487-503. https://doi.org/10.1089/ars.2019.7832
- Chen Z, Wang C, Yu N, et al. INF2 regulates oxidative stress-induced apoptosis in epidermal HaCaT cells by modulating the HIF1 signaling pathway. Biomed Pharmacother 2019;111:151-61. https://doi.org/10.1016/j.biopha.2018.12.046
- Dikalov SI, Dikalova AE. Crosstalk between mitochondrial hyperacetylation and oxidative stress in vascular dysfunction and hypertension. Antioxid Redox Signal 2019;31:710-21. https://doi.org/10.1089/ars.2018.7632
- Kotani K, Watanabe J, Miura K, Gugliucci A. Paraoxonase 1 and non-alcoholic fatty liver disease: a meta-analysis. Molecules 2021;26:2323. https://doi.org/10.3390/molecules26082323
- Di Stefano A, Maniscalco M, Balbi B, Ricciardolo FLM. Oxidative and nitrosative stress in the pathogenesis of obstructive lung diseases of increasing severity. Curr Med Chem 2020;27:7149-58. https://doi.org/10.2174/0929867327666200604165451
- Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-37. https://doi.org/10.1038/nri2873
- Saunders LP, Bischoff KM, Bowman MJ, Leathers TD. Inhibition of Lactobacillus biofilm growth in fuel ethanol fermentations by Bacillus. Bioresour Technol 2019;272:156-61. https://doi.org/10.1016/j.biortech.2018.10.016
- Li J, Islam S, Guo P, Hu X, Dong W. Isolation of antimicrobial genes from Oryza rufipogon griff by using a Bacillus subtilis expression system with potential antimicrobial activities. Int J Mol Sci 2020;21:8722. https://doi.org/10.3390/ijms21228722
- Huang B, Wang J, Han X, et al. The relationship between material transformation, microbial community and amino acids and alkaloid metabolites in the mushroom residue-prickly ash seed oil meal composting with biocontrol agent addition. Bioresour Technol 2022;350:126913. https://doi.org/10.1016/j.biortech.2022.126913
- Ruan S, Li Y, Wang Y, Huang S, Luo J, Ma H. Analysis in protein profile, antioxidant activity and structure-activity relationship based on ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis. Ultrason Sonochem 2020;64:104846. https://doi.org/10.1016/j.ultsonch.2019.104846
- Cui J, Xia P, Zhang L, Hu Y, Xie Q, Xiang H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem 2020;333:127527. https://doi.org/10.1016/j.foodchem.2020.127527
- Rahman MS, Choi YH, Choi YS, Alam MB, Lee SH, Yoo JC. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chem 2018;239:502-10. https://doi.org/10.1016/j.foodchem.2017.06.106
- Fotina AA, Fisinin VI, Surai PF. Recent developments in usage of natural antioxidants to improve chicken meat production and quality. Bulg J Agric Sci 2013;19:889-96.
- Surai PF. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick, Part 1. Worlds Poult Sci J 2012;68:465-76. https://doi.org/10.1017/S0043933912000578
- Xing JH, Zhao W, Li QY, et al. Bacillus subtilis BSH has a protective effect on Salmonella infection by regulating the intestinal flora structure in chickens. Microb Pathog 2021;155:104898. https://doi.org/10.1016/j.micpath.2021.104898
- Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2017;96:74-82. https://doi.org/10.3382/ps/pew246
- Singh Z, Karthigesu IP, Singh P, Kaur R. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iran J Public Health 2014;43:7-16.
- Zhang Y, Chen SY, Hsu T, Santella RM. Immunohistochemical detection of malondialdehyde-DNA adducts in human oral mucosa cells. Carcinogenesis 2002;23:207-11. https://doi.org/10.1093/carcin/23.1.207
- Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011;15:1583-606. https://doi.org/10.1089/ars.2011.3999
- Eleutherio ECA, Silva Magalhaes RS, de Araujo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys 2021;697:108701. https://doi.org/10.1016/j.abb.2020.108701
- Zhao XJ, Yu HW, Yang YZ, et al. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol 2018;18:124-37. https://doi.org/10.1016/j.redox.2018.07.002
- Leake I. Choline uptake is vital for IL-1β-driven inflammation. Nat Rev Rheumatol 2019;15:320. https://doi.org/10.1038/s41584-019-0228-4
- Sorokin AV, Mehta NN. The relationship between TNF-alpha driven inflammation, lipids, and endothelial function in rheumatoid arthritis: a complex puzzle continues. Cardiovasc Res 2022;118:10-2. https://doi.org/10.1093/cvr/cvab190
- Toita R, Kawano T, Murata M, Kang JH. Anti-obesity and anti-inflammatory effects of macrophage-targeted interleukin10-conjugated liposomes in obese mice. Biomaterials 2016;110:81-8. https://doi.org/10.1016/j.biomaterials.2016.09.018
- Geginat J, Larghi P, Paroni M, et al. The light and the dark sides of Interleukin-10 in immune-mediated diseases and cancer. Cytokine Growth Factor Rev 2016;30:87-93. https://doi.org/10.1016/j.cytogfr.2016.02.003
- Saxton RA, Tsutsumi N, Su LL, et al. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin10. Science 2021;371:eabc8433. https://doi.org/10.1126/science.abc8433
- Coleman LG Jr, Zou J, Qin L, Crews FT. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 2018;72:61-77. https://doi.org/10.1016/j.bbi.2017.10.027
- Ye LL, Wei XS, Zhang M, Niu YR, Zhou Q. The significance of tumor necrosis factor receptor Type II in CD8+regulatory T cells and CD8+effector T cells. Front Immunol 2018;9:583. https://doi.org/10.3389/fimmu.2018.00583
- Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front Immunol 2018;9:444. https://doi.org/10.3389/fimmu.2018.00444
- Chen X, Zhao H, Lu Y, Meng F, Lu Z, Lu Y. Surfactin mitigates dextran sodium sulfate-induced colitis and behavioral disorders in mice by mediating gut-brain-axis balance. J Agric Food Chem 2023;71:1577-92. https://doi.org/10.1021/acs.jafc.2c07369
- Zhao H, Shao D, Jiang C, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 2017;101:5951-60. https://doi.org/10.1007/s00253-017-8396-0
- Mir NA, Rafiq A, Kumar F, Singh V, Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. J Food Sci Technol 2017;54:2997-3009. https://doi.org/10.1007/s13197-017-2789-z
- Wang X, Wang Z, Zhuang H, et al. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci 2021;176:108456. https://doi.org/10.1016/j.meatsci.2021.108456
- Sato H, Hayashi T, Ando T, Hisaeda Y, Ueno T, Watanabe Y. Hybridization of modified-heme reconstitution and distal histidine mutation to functionalize sperm whale myoglobin. J Am Chem Soc 2004;126:436-7. https://doi.org/10.1021/ja038798k
- Wang Z, Tu J, Zhou H, Lu A, Xu B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci 2021;172:108359. https://doi.org/10.1016/j.meatsci.2020.108359
- Wilson SA, Kroll T, Decreau RA, et al. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: experimental insight into Fe-O2 bonding. J Am Chem Soc 2013;135:1124-36. https://doi.org/10.1021/ja3103583
- Bak KH, Bolumar T, Karlsson AH, Lindahl G, Orlien V. Effect of high pressure treatment on the color of fresh and processed meats: a review. Crit Rev Food Sci Nutr 2019;59:228-52. https://doi.org/10.1080/10408398.2017.1363712
- Wei Y, Li C, Zhang L, Su Z, Xu X. Inhibition of methemoglobin formation in aqueous solutions under aerobic conditions by the addition of amino acids. Int J Biol Macromol 2014;64:267-75. https://doi.org/10.1016/j.ijbiomac.2013.12.010
- Kumar Y, Yadav DN, Ahmad T, Narsaiah K. recent trends in the use of natural antioxidants for meat and meat products. Compr Rev Food Sci Food Saf 2015;14:796-812. https://doi.org/10.1111/1541-4337.12156
- Karre L, Lopez K, Getty KJK. Natural antioxidants in meat and poultry products. Meat Sci 2013;94:220-7. https://doi.org/10.1016/j.meatsci.2013.01.007