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Bacillus subtilis improves antioxidant capacity and  
optimizes inflammatory state in broilers

Yu Zhang1,2,a, Junyan Zhou1,a, Linbao Ji2, Lian Zhang2, Liying Zhao1,  
Yubing Guo1, Haitao Wei1, and Lin Lu1,*

Objective: Bacillus subtilis, a kind of probiotic with broad-spectrum antibacterial function, 
was commonly used in livestock and poultry production. Recent research suggested that 
Bacillus subtilis may have antioxidant properties and improve immune response. This study 
aimed to verify the probiotic function of Bacillus subtilis in the production of broiler chickens.
Methods: A total of 324 (1-day-old) Arbor Acres broilers were selected and randomly 
divided into three groups: basal diet group (Ctr Group), basal diet + antibiotic growth 
promoter group (Ctr + AGP) and basal diet + 0.5% Bacillus subtilis preparation group 
(Ctr + Bac). The experiment lasted for 42 days. Muscle, serum and liver samples were 
collected at 42 days for determination.
Results: The results showed that Bacillus subtilis could decrease malondialdehyde content 
in the serum and liver (p<0.05) and increase superoxide dismutase 1 mRNA expression 
(p<0.01) and total superoxide dismutase (p<0.05) in the liver. In addition, com pared with 
AGP supplementation, Bacillus subtilis supplementation increased interleukin-10 (IL-10)  
and decreased tumor necrosis factor-α and IL-1β level in the serum (p<0.05). At 45 minutes 
after slaughter Ctr + Bac presented a higher a* value of breast muscle than Ctr Group (p< 
0.05), while significant change in leg muscle was not identified. Moreover, there was no 
difference in weight, shear force, cooking loss and drip loss of breast and leg muscle between 
treatments.
Conclusion: Our results demonstrate that Bacillus subtilis in diet can enhance antioxidant 
capacity and optimize immune response of broilers.
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INTRODUCTION 

Mitochondria convert oxygen and organic molecules into cellular energy during aerobic 
respiration while generating significant amounts of reactive oxygen species (ROS) [1]. 
ROS act as signaling molecules and participate in normal physiological processes, including 
intracellular signaling. For example, ROS induces phosphorylation of AKT serine/threonine 
kinase 1 at Ser473, leading to the activation of mechanistic target of rapamycin kinase 
complex 2, which ultimately promotes myofiber cell differentiation [2]; besides, ROS can 
interact with cysteine residues in protein molecules, leading to conformational changes 
through sulfhydryl oxidation. However, high concentrations of ROS can have detrimental 
effects on cells, damaging lipids, proteins, and nucleic acids [3]. Henry et al [4] reported 
that ROS can directly harm DNA structure and oxidize Rec A recombinase, inhibiting 
DNA repair and recombination, while Diwanji and Bergmann [5] demonstrated that ROS 
can induce upregulation and accumulation of matrix metalloproteinase 2 in the basement 
membrane (BM), causing BM damage.
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 To prevent excessive ROS accumulation, the body employs 
various antioxidant mechanisms that can inhibit ROS pro-
duction or neutralize ROS generated during metabolism [6]. 
Such as the classical KEAP1-Nrf2-ARE signaling pathway. 
Disruption of the balance between oxidative response and 
antioxidant mechanisms can cause oxidative stress, leading 
to cellular damage [7,8]. Oxidative stress can also result in 
vascular dysfunction [9], nonalcoholic fatty liver disease [10], 
obstructive pulmonary disease [11], and other illnesses. Addi-
tionally, ROS can induce the release of inflammatory factors 
by regulating the signaling pathway downstream of pattern 
recognition receptors, causing chronic sterile inflammation 
[12].
 High-density breeding environments can lead to serious 
oxidative stress in poultry, which may affect their health. 
Bacillus exhibits broad-spectrum antibacterial properties 
[13-15], positioning it as a potential probiotic for animal 
husbandry applications, and recent studies identified its an-
tioxidant properties, further highlighting its potential for 
promoting animal health. For instance, Ruan et al [16] used 
soybean meal as a substrate for Bacillus subtilis fermentation, 
producing proteins and peptides with potent antioxidant 
activity. Cui et al [17] found that soybean fermentation with 
Bacillus increased the activity of antioxidant enzymes and 
reduced malondialdehyde levels in the serum and liver of 
mice. Furthermore, Rahman et al [18] isolated and purified 
a polypeptide with a molecular weight of approximately 1.0 
kDa from a Bacillus strain that exhibited broad-spectrum 
antibacterial activity and up-regulated the transcription and 
translation of NRF-2, thereby enhancing the activity of anti-
oxidant enzymes. It is necessary to investigate the currently 
unexplored antioxidant function of a screened Bacillus subtilis 
strain with probiotic potential incorporated into the feeding 
regimen of broilers. Therefore, the current study aims to in-
vestigate the effects of feeding a screened Bacillus subtilis 
strain with the probiotic potential to Arbor Acres (AA) broilers 
on antioxidant function, inflammatory state, and meat quality. 
The results of the present study will contribute to a better 
understanding of the potential applications of Bacillus subtilis 
in poultry production.

MATERIALS AND METHODS

Animal care
The present experiment was approved by the China Agricul-
tural University Animal Care and Use Committee (Beijing, 
AW12401202-1-1).

Bacillus subtilis preparation and basal diet
The Ministry of Agriculture Feed Industry Centre screened 
soil samples from a pig experimental base in Beijing and 
obtained a probiotic strain through ultraviolet mutagenesis. 

The strain was identified as Bacillus subtilis via 16S RNA se-
quencing and deposited with the General Microbiology Center 
(CGMCC) of the Chinese Microbial Species Preservation 
Administration Committee on July 12, 2021, under the classi-
fication name of Bacillus subtilis and storage number of 
CGMCC No. 22855. The laboratory confirmed the strain's 
potent antibacterial properties and successfully applied for a 
patent. The strain was utilized to produce solid fermented 
feed through probiotic fermentation technology in Bacillus 
subtilis preparations for subsequent experiments. The basic 
diet used in this study was also provided by the Ministry of 
Agriculture Feed Industry Centre. The basal diet was a corn-
soybean meal type ration, and the composition was as shown 
in Supplementary Table S1.

Animals grouping and diets
A total of 324 1-day-old AA broilers with an average body 
weight of 45±5 g were randomly divided into 3 groups with 
18 replicates (cages) per group and 6 AA broilers per replicate 
according to randomized block design. All replicates were 
randomly distributed within the experimental area. The blank 
control group (Ctr Group) was fed with a basal diet, the anti-
biotic growth promoter (AGP) group (Ctr + AGP) was fed 
with a basal diet supplemented with chlortetracycline, and 
the Bacillus subtilis preparation group (Ctr + Bac) was fed 
with a basal diet supplemented with 0.5% Bacillus subtilis 
preparation. 
 The experiment lasted for 42 days. All broilers were pro-
vided with fresh and clean water, as well as the freedom to 
access food. From days 1 to 7, the temperature was main-
tained at 32°C to 35°C. From days 8 to 14, the temperature 
was kept between 29°C to 32°C. Between days 15 to 42, the 
temperature was maintained at 25°C to 29°C. All broilers 
were vaccinated with the Newcastle disease (ND) and infec-
tious bronchitis (IB) vaccine and infectious bursal disease 
(IBD) vaccine at 7 and 14 days of age, respectively. Through-
out the experiment, supplemental light was provided for 24 
hours in the experimental area. On day 42, one broiler was 
selected from each replicate to collect experimental samples.

Sample collection
On day 41, all feed was emptied at 8:00 PM, and blood 
samples were collected from the sub-wing vein at 8:00 AM 
on day 42. The blood samples were allowed to stand at 4°C 
for 2 hours before being stratified. The samples were then 
placed in a low-temperature, high-speed centrifuge and cen-
trifuged at 4°C and 3,500 r/min for 10 minutes. The upper 
layer of serum was absorbed using a pipetting gun, trans-
ferred to a blank centrifuge tube, and stored at –80°C for 
future use.
 After blood collection via cardiac puncture, the chickens 
were sacrificed. Liver tissues, approximately 2 cm in length, 
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0.8 cm in width, and 1 cm in height, were collected from the 
tip of the liver lobule for histological observation. The liver 
tissues were fixed with a 4% paraformaldehyde solution. Addi-
tionally, the remaining liver tissue was collected, and excess 
blood on the surface was cleaned with sterile normal saline. 
The liver tissue was then transferred to sterile frozen tubes 
and stored in an ultra-low refrigerator until ready for use. 
Throughout the sampling process, efforts were made to ensure 
that liver samples were collected from the same location for 
each broiler.

Meat quality
Meat quality indicators for the breast and leg muscles, in-
cluding meat color, pH value, cooking loss, and drip loss, 
were assessed. Following the slaughter of the broilers, the left 
breast and leg muscles were extracted and placed on an enamel 
plate for 45 minutes. Three randomly selected spots on the 
muscle were then used to determine the pH value and meat 
color (lightness [L*], redness [a*], and yellowness [b*]) using 
a pH meter and digital color reader. Subsequently, the samples 
were stored at 4°C for 24 hours before being retested. 
 The right breast and leg muscles of the broilers were col-
lected, and the meat sample was cut into strips measuring 
2 cm×5 cm×3 cm. The initial weight of the sample (W1) 
was recorded after weighing. The muscle fiber was then 
hooked with an iron wire, allowing it to hang vertically 
down in an aerated polyethylene film bag. The bag was 
tightly tied at the mouth to prevent contact between the 
muscle sample and the bag wall. The sample was hung in a 
refrigerator at 4°C for 24 hours. After 24 hours, the muscle 
samples were weighed again and the final weight (W2) was 
recorded. Subsequently, the drip loss of muscle samples was 
calculated using Equation 1.
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 Equation 1

 Samples weighing approximately 100 g were extracted from 
the remaining right pectoral and leg muscles and weighed, 
with the initial body weight recorded as W3. The muscle 
samples were then placed in a thermostatic water bath and 
processed at 90°C for 45 minutes. Once processed, the muscle 
sample was removed from the water bath and allowed to cool 
to room temperature. Excess water on the surface of the 

sample was wiped off with absorbent paper and left to dry. 
The muscle was then weighed again and the final weight was 
recorded as W4. Subsequently, the cooking loss of muscle 
samples was calculated using Equation 2.
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Determination of antioxidant index
The serum samples and liver samples stored at –80°C were 
removed and thawed on ice. Normal saline was added to the 
thawed liver tissue at a weight ratio of 1:9 at 4°C. The result-
ing mixture was then ground to uniformity at 4°C and 60.00 
HZ using an automatic sample freezing grinder. The ground 
samples were subsequently centrifuged at 3,000 R/min at 
4°C for 15 min in a cryogenic high-speed centrifuge. The re-
sulting supernatant was 10% tissue homogenate, which was 
transferred to a blank centrifuge tube using a pipette gun for 
subsequent tests. Enzyme activity of glutathione peroxidase 
(GSH-Px) and total superoxide dismutase (T-SOD), as well 
as the content of malondialdehyde (MDA) in serum and 10% 
liver tissue homogenate, were detected using the GSH-Px 
assay kit (colorimetric method), total superoxide dismutase 
assay kit (hydroxylamine method), and MDA assay kit, respec-
tively.

Real-time fluorescence quantitative reverse 
transcription polymerase chain reaction
Total RNA was extracted from liver tissues using the M5 
HiPer RNApure Universal Animal ultra-pure total RNA Rapid 
Extraction Kit (Mei5 Biotechnology Co., Ltd., Beijing, China). 
The liver tissue samples were then reverse-transcribed into 
cDNA using the M5 Super qPCR RT kit with gDNA remover 
(Mei5 Biotechnology Co., Ltd., China). The resulting cDNA 
was used as the template for real-time fluorescence quantita-
tive reverse transcription polymerase chain reaction (qRT-
PCR). SOD1 and SOD3 were used as the target gene and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 
used as the housekeeping gene. The primers used in the 
qRT-PCR were provided by Tsingke Biotechnology Co., 
Ltd, Beijing, China, and the TSINGKE TSE202 2×T5 Fast 
qPCR Mix (SYBR Green I) was used for the qRT-PCR. Table 
1 shows detailed information on the primers used in the 
experiment. The test results were analyzed using the 2–ΔΔCt 

Table 1. Sequences of the primers used for real-time fluorescence quantitative reverse transcription polymerase chain reaction 

Genes Forward primer (5–3′) Reverse primer (5–3′)

SOD1 GGTGCTCACTTCAATCCTGA TACTTCTGCCACTCCTCCCT
SOD3 TCTTGGTTGCCTCCGTCCCT AGCACTTCGTCTCCACTCCC
GAPDH TCAAATGGGCAGATGCAGGT GATGGCATGGACAGTGGTCA

SOD1, superoxide dismutase 1; SOD3, superoxide dismutase 3; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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method and each experiment was repeated three times.

Determination of inflammatory cytokines
The contents of tumor necrosis factor alpha (TNF-α), inter-
leukin-1β (IL-1β), and IL-10 in serum and 10% liver tissue 
homogenate were detected using the TNF-α assay kit (enzyme 
immunoassay), IL-1β assay kit (enzyme immunoassay), 
and IL-10 assay kit (enzyme immunoassay), respectively.

Histological observation of liver tissue
The liver samples were retrieved from a 4% paraformalde-
hyde solution, embedded in paraffin, and sectioned into 
tissue sections of 3 μm thickness using a rotary microtome. 
Hematoxylin and eosin dyes (H&E) were applied to the tissue 
sections, which were then observed under a high-magnifica-
tion microscope to assess the morphological changes in the 
liver tissue.

Statistical analysis
One-way analysis of variance was used to analyze the differ-
ences between groups using IBM SPSS Statistics version 23. 
Statistical significance is considered to be extremely signifi-
cant if p<0.01, significant if p<0.05, and to have a trend towards 

statistical significance if 0.05<p<0.1. The statistics and other 
plots were completed with GraphPad Prism 9 software (Version 
9.3.1, USA).

RESULTS

Effects of Bacillus subtilis preparation on antioxidant 
capacity of broilers
The results indicate that the MDA content in the liver and 
serum of the Ctr + Bac group was significantly lower than 
those of the Ctr group (p<0.05; Figure 1). Compared with 
the Ctr group, the T-SOD activity in the liver of Ctr + AGP 
and Ctr + Bac groups was dramatically increased (p<0.05). 
Additionally, there was no significant difference in GSH-Px 
activity in the liver and serum and T-SOD in the serum be-
tween treatments.

Effect of Bacillus subtilis preparation on mRNA 
expression of SOD1 and SOD3 in liver
The GAPDH transcription level in the liver was used as a 
reference to analyze changes in the transcription level of the 
SOD1 and SOD3 genes in the liver of the three experimental 
groups. The effects of Bacillus subtilis preparation and AGP 

Figure 1. Bacillus subtilis preparation can reduce oxidative stress injury and improve the activity of antioxidant enzymes of broiler. (A) The MDA 
content, (B) the activity of T-SOD, (C) and the activity of GSH-Px in the liver; (D) the MDA content, (E) the activity of T-SOD, (F) and the activity of 
GSH-Px in the serum are presented. MDA, malondialdehyde; T-SOD, total superoxide dismutase; GSH-Px, glutathione peroxidase. *Significant dif-
ferences between the group means p<0.05.
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on SOD1 and SOD3 transcription levels in the liver tissue of 
broilers are shown in Figure 2. The transcription level of SOD1 
in the liver tissue of the Ctr + Bac group was significantly 
higher than that of both the Ctr Group and the Ctr + AGP 
group (p<0.01). Furthermore, there were no significant dif-
ferences observed in the liver SOD3 expression among the 
treatment groups.

Effect of Bacillus subtilis preparation on liver tissue 
morphology
To investigate whether Bacillus subtilis preparation could in-
duce liver damage in broilers, histopathological observations 
were performed. The results are shown in Figure 3, which 
indicate that the liver tissue structure of the Ctr group, Ctr + 
Bac, and Ctr + AGP groups was intact, with clear hepatic 
lobules, closely arranged hepatocytes, and an obvious hepa-
tocyte cable structure. No obvious hepatic lesions or injuries 
were observed in the visual field.

Effect of Bacillus subtilis preparation on inflammatory 
factors
Changes in antioxidant function are often accompanied by 
changes in the inflammatory state. To investigate the effect 
of Bacillus subtilis preparation on the upregulation of anti-
oxidant capacity and its influence on the inflammatory state, 
the levels of IL-1β, IL-10, and TNF-α in the liver and serum 
of broilers in the three groups were detected, as shown in 
Figure 4. Compared with the Ctr group, Ctr + Bac group 
significantly increased IL-1β (p<0.05) levels in the serum and 
IL-10 (p<0.05) and IL-1β (p<0.01) level in the liver. Moreover, 
Ctr + Bac group and Ctr group showed higher IL-10 levels 
and lower TNF-α and IL-1β in the liver and serum than the 
Ctr + AGP group (p<0.05).

Effects of Bacillus subtilis preparation on meat quality 
of broilers
At 45 minutes after slaughter, the a* value of breast muscle 
in the Ctr + Bac group was significantly higher than that in 
both the Ctr group and the Ctr + AGP group (p<0.05). In 
addition, at 24 hours after slaughter, the Ctr + AGP group 
showed significantly lower a* values than the other two groups 
(p<0.05). Moreover, the b* value of breast muscle in the Ctr 
+ Bac group was markedly increased compared with the Ctr 
group (p<0.05). The results are shown in Figure 5 and Figure 
6. There was no observable difference in meat color and pH 
of leg muscle and weight, shear force, cooking loss, and drip 
loss of breast and leg muscle between treatments (Figure 7). 

DISCUSSION

Effect of Bacillus subtilis on the antioxidant function of 
broilers
The presence of stress in commercial broiler production can 
have a negative impact on their productivity and reproduc-
tive performance. Scientific research has established that in 
poultry production, stressors from different sources (such as 
technology, environment, and nutrition) can trigger oxida-
tive stress at the cellular level [19]. This phenomenon arises 
due to the surplus generation of free radicals or deficient anti-
oxidant defense mechanisms [20]. Therefore, the antioxidant 
defense mechanisms assume a crucial function in ameliorat-
ing the detrimental consequences of free radicals on critical 
biological macromolecules, including proteins, lipids, and 
DNA, which could profoundly impact the performance of 
poultry production. Recent studies have found that bacillus 
supplements can not only regulate intestinal flora homeosta-
sis in animals but also enhance antioxidant capacity, which 
may be a potential antioxidant additive for poultry produc-

Figure 2. Bacillus subtilis preparation can improve the expression of antioxidant enzymes in the liver of broilers. The mRNA expression of SOD1 
(A) and SOD3 (B) are presented. SOD1, superoxide dismutase 1; SOD3, superoxide dismutase 3. *, ** Significant differences between the groups 
at p<0.05 and p<0.01, respectively. 
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tion [21,22]. The present results suggested that Bacillus subtilis 
can enhance antioxidant performance by increasing T-SOD 
levels and optimize the immune response of AA broilers. 

 MDA is a highly reactive, mutagenic, and tumorigenic 
three-carbon dialdehyde that is produced during the peroxi-
dation of polyunsaturated fatty acids and the metabolism of 

Figure 3. Effect of Bacillus subtilis preparation on the liver morphology of broilers, the liver sections were stained with hematoxylin and eosin. (A) 
Liver tissue sections of Ctr Group at 40× magnification. (B) Liver tissue sections of Ctr Group at 100× magnification. (C) Liver tissue sections of 
Ctr Group at 200× magnification. (D) Liver tissue sections of Ctr + AGP group at 40× magnification. (E) Liver tissue sections of Ctr + AGP group at 
100× magnification. (F) Liver tissue sections of Ctr + AGP group at 200× magnification. (G) Liver tissue sections of Ctr + Bac group at 40× magni-
fication. (H) Liver tissue sections of Ctr + Bac group at 100× magnification. (I) Liver tissue sections of Ctr + Bac group at 200× magnification. Ctr, 
control; AGP, antibiotic growth promoter.

Figure 4. Bacillus subtilis preparation can modulate the inflammatory state of the body. (A) Effect of Bacillus subtilis preparation on the level of 
medium inflammatory factors (IL-10, TNF-α, and IL-1β) in the liver and (B) serum. IL-10, interleukin-10; TNF-α, tumor necrosis factor-α. *, ** Signifi-
cant differences between the groups at p<0.05 and p<0.01, respectively.
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arachidonic acid [23]. MDA can react with DNA to form 
MDA-DNA adducts, making it a valuable biomarker of en-
dogenous DNA damage. The monitoring of MDA levels in 
various biological systems can serve as a critical indicator of 
lipid peroxidation in both in vitro and in vivo settings and 
has been linked to various health disorders [24]. SOD is a 
metal-containing antioxidant enzyme present in vivo. It cat-
alyzes the dismutation of superoxide anion radicals into 
oxygen and hydrogen peroxide, thereby playing a vital role 
in maintaining the balance between oxidative stress and an-
tioxidant defense [25]. SOD1 is ubiquitously distributed in 
the nucleus, cytoplasm, and extracellular space, and is widely 
regarded as the principal and preeminent SOD, operating 
cooperatively with the antioxidant enzyme glutathione per-
oxidase to eliminate detrimental ROS within the cell [26]. In 
this study, MDA content in liver and serum was significantly 
lower in the Ctr + Bac group than in the Ctr group, suggest-
ing that Bacillus subtilis was able to reduce oxidative stress 
injury. We also assayed GSH-Px and SOD enzyme activities 
in liver and serum, and the results suggested to us that Bacillus 
subtilis exerts its antioxidant function mainly by up-regulating 
SOD enzyme activities. Based on this clue, we examined the 

transcript levels of the two major SOD enzymes (SOD1 and 
SOD2) in the liver. The qRT-PCR results showed that the 
transcript level of SOD1 in the liver of the Ctr + Bac group 
was higher than that of the Ctr group and the Ctr + AGP 
group, which indicated that Bacillus subtilis was able to up-
regulate hepatic SOD1 mRNA expression as a way to enhance 
the antioxidant function, and the effect was better than that 
of AGP.

Effect of Bacillus subtilis on the inflammatory response 
of broiler chickens
Changes in the redox state often accompany changes in the 
inflammatory state [27]. To investigate the effect of Bacillus 
subtilis preparations on improving antioxidant function and 
its impact on the inflammatory state, we measured the levels 
of three inflammatory factors, IL-1β, IL-10, and TNF-α in 
the liver and serum. IL-1β [28] and TNF-α [29] are known 
to promote the inflammatory response, while IL-10 [30] has 
been thought to inhibit it. However, recent research challenges 
this simplistic view. For example, IL-10 can promote the 
growth and differentiation of B cells, leading to autoimmune 
system diseases [31]. Structurally, Saxton et al [32] have also 

Figure 5. Effect of Bacillus subtilis preparation on meat color and pH of breast muscle. The (A) L* value, (B) a* value, (C) b* value and (D) pH value 
of breast muscle are presented. * Significant differences between the group means p<0.05.
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shown that IL-10 promotes inflammatory responses. The re-
search by Coleman Jr et al [33] suggests that IL-1β can enhance 
the immune function of the body by forming a heterogeneous 
complex with high mobility group box 1. Similarly, TNF-α has 
immunosuppressive properties [34], binding to TNF receptor 
type 2 to activate regulatory T cells, thereby regulating the 
body's immune function [35]. These findings indicate that 
we cannot simply categorize inflammatory factors as pro-in-
flammatory or anti-inflammatory, nor can we evaluate the 
body's health status solely based on changes in the content 
of inflammatory factors. To investigate this further, we per-
formed histological sectioning and HE staining on broiler 
liver tissue and observed tissue morphology under high and 
low magnification. No significant differences or lesions 
were found in the liver tissue of the three experimental 
groups of broilers, indicating that the Bacillus subtilis supple-
mentation and the resulting changes in antioxidant function 
and immune response did not have any negative impact on 
the health of the organism. The change in inflammatory 
state is likely to be a positive immune response of the body. 
From the mechanism of action analysis, Bacillus are capable 
of secreting a variety of lipopeptide secondary metabolites, 

such as surfactins, iturins, and fengycins. It has been reported 
that these secondary metabolites have a variety of biological 
activities, such as modulation of intestinal flora and host in-
flammatory response. Surfactin reduces the abundance of 
colitis-associated flora [36] and inhibits the inflammatory effects 
triggered by lipopolysaccharide macrophage interactions [37].

Effect of Bacillus subtilis on meat quality of broilers
The visual appearance is a crucial quality attribute of poultry 
meat, as consumers tend to associate it with the product's 
freshness, and their purchase decision is often based on their 
perception of its appeal [38]. Previous research has shown 
that the concentration of different redox states of myoglobin 
in muscle is a crucial factor affecting the color of meat [39]. 
Myoglobin, a binding protein composed of a peptide chain 
and a heme prosthetic group, plays a role in storing and 
transporting oxygen in muscle tissue [40]. In the absence of 
oxygen, myoglobin is mainly present in the deoxygenated 
state, known as deoxymyoglobin (DeoMb) [41]. If muscle 
tissue contains high levels of DeoMb, it appears purplish-red 
in color. When DeoMb comes into contact with oxygen, the 
heme prosthetic group can bind to oxygen in an oxygenated 

Figure 6. Effect of Bacillus subtilis preparation on meat color and pH of leg muscle. The (A) L* value, (B) a* value, (C) b* value and (D) pH value of 
leg muscle are presented.
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form instead of being oxidized [42], resulting in the conver-
sion of DeoMb to oxymyoglobin (OxyMb) and giving the 
meat a bright red color [43]. Additionally, Fe2+ in the heme 
prosthetic group can be oxidized by oxygen to Fe3+, con-
verting OxyMb to methemoglobin (MetMb) and causing 
the meat to turn brown [44]. As meat ages, the myoglobin in 
it is converted to its oxidized form, MetMb, which causes 
the meat to turn brown. This is a primary reason why con-
sumers reject meat and meat products. The rate of Met Mb 
formation increases with lipid oxidation, which in turn acts 
as a catalyst for further lipid oxidation, leading to color and 
flavor deterioration of the product [45]. In the current study, 
it was observed that the use of Bacillus subtilis resulted in an 
improvement of broiler meat color as indicated by an increase 
in the a* value of breast muscle post-slaughter, which could 
be partly attributed to its antioxidant activity [46]. Addition-
ally, the present study also identified another drawback of 
AGP, specifically the decrease in breast muscle a* value of 
broiler.

Prospects for the application of Bacillus subtilis
Currently, there is an urgent need for the breeding industry 
to find suitable alternatives to antibiotics due to a series of 
serious consequences of antibiotic misuse. Among the many 

directions, probiotics are a popular area of research. Probiotics 
can be developed into probiotic preparations, feed additives 
and even fermented feeds, which not only maintain the 
health of livestock and poultry in many ways and improve 
production and reproduction performance, but also do not 
bring negative impacts like antibiotics. This study indicates 
that as research continues, the potential benefits of probiotics 
will continue to be explored for future applications in the 
breeding industry.

CONCLUSION

Bacillus subtilis supplementation used in the current ex-
periment can enhance antioxidant function, modulate 
inflammatory state and improve the meat color of broiler. 
This study has important implications, as probiotics, particu-
larly those with antioxidative properties, can have a significant 
impact on enhancing the health and meat quality of poultry 
in high-density breeding environments.
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