DOI QR코드

DOI QR Code

Effects of biostimulants, AMPEP and Kelpak on the growth and asexual reproduction of Pyropia yezoensis (Bangiales, Rhodophyta) at different temperatures

  • Sook Kyung Shin (Department of Marine Science, Incheon National University) ;
  • Qikun Xing (Department of Marine Science, Incheon National University) ;
  • Ji-Sook Park (Department of Marine Science, Incheon National University) ;
  • Charles Yarish (Department of Ecology & Evolutionary Biology, University of Connecticut) ;
  • Fanna Kong (College of Marine Life Sciences, Ocean University of China) ;
  • Jang K. Kim (Department of Marine Science, Incheon National University)
  • Received : 2024.01.09
  • Accepted : 2024.03.11
  • Published : 2024.03.21

Abstract

Acadian marine plant extract powder (AMPEP) and Kelpak are commercial biostimulants derived from brown algae Ascophyllum nodosum. This study was to determine if AMPEP and Kelpak can induce thermal resistance in Pyropia yezoensis. P. yezoensis blades were exposed to different concentrations (control: 0, low: 0.001, high: 1 ppm) of AMPEP and Kelpak at 10℃ for 6 and 7 days, respectively. Those blades were then cultivated in von Stosch enriched seawater medium at different temperatures (10, 15, 20, and 25℃) with 12 : 12 L : D photoperiod and 100 µmol m-2 s-1 of photosynthetically active radiation for additional 15 days. Results showed that P. yezoensisreproduced archeospores at 20 and 25℃ at all biostimulant conditions within 15 days. At lower temperatures (10 and 15℃), only AMPEP-treated P. yezoensis reproduced archeospores. P. yezoensis exposed to 1 ppm Kelpak exhibited higher phycoerythrin and phycocyanin contents than control and 0.001 ppm conditions at 15℃. AMPEP-treated conditions showed higher phycoerythrin and phycocyanin contents than control at 10℃. These results suggest that AMPEP and Kelpak may not enhance the thermal resistance of P. yezoensis. However, AMPEP stimulated archeospores release at lower temperatures. The treatment of AMPEP and Kelpak also increased the pigment contents in P. yezoensis. These results suggest that the use of seaweed-derived biostimulants can provide some economic benefits in P. yezoensis aquaculture. The enhancement of archeospores formation by AMPEP at lower temperature may also increase the productivity since Pyropia farming relies on the accumulation of secondary seedings via asexual reproduction.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A06015181) and by the Ministry of Science and ICT (NRF-2022R1A2C1011394), and funded by the Ministry of Oceans and Fisheries of Korea (Project No. 20190518).

References

  1. Ali, M. M., Sani, M. Z. B., Hi, K. K., Yasir, S. M., Critchley, A. T. & Hurtado, A. Q. 2018. The comparative efficiency of a brown algal-derived biostimulant extract (AMPEP), with and without supplemented PGRs: the induction of direct, axis shoots as applied to the propagation of vegetative seedlings for the successful mass cultivation of three commercial strains of Kappaphycus in Sabah, Malaysia. J. Appl. Phycol. 30:1913-1919. doi.org/10.1007/s10811-017-1366-1
  2. Arthur, G. D., Stirk, W. A., van Staden, J. & Scott, P. 2003. Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S. Afr. J. Bot. 69:207-211. doi.org/10.1016/S0254-6299(15)30348-3 
  3. Aruga, Y. 1984. In vivo absorption spectra and pigment contents of the two types of color mutants of Porphyra. Jpn. J. Phycol. 32:243-250.
  4. Beer, S. & Eshel, A. 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust. J. Mar. Freshw. Res. 36:785-792. doi.org/10.1071/MF9850785
  5. Bryant, D. A. 1982. Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J. Gen Microbiol. 128:835-844. doi.org/10.1099/00221287-128-4-835
  6. Chen, L. C.-M., Craigie, J. S. & Xie, Z. K. 1994. Protoplast production from Porphyra linearis using a simplified agarase procedure capable of commercial application. J. Appl. Phycol. 6:35-39. doi.org/10.1007/BF02185902
  7. Dawange, P. & Jaiswar, S. 2020. Effects of Ascophyllum marine plant extract powder (AMPEP) on tissue growth, proximate, phenolic contents, and free radical scavenging activities in endemic red seaweed Gracilaria corticata var. cylindrica from India. J. Appl. Phycol. 32:4127-4135. doi.org/10.1007/s10811-020-02254-6
  8. Duffield, E. C., Waaland, S. D. & Cleland, R. 1972. Morphogenesis in the red alga, Griffithsia pacifica: regeneration from single cells. Planta 105:185-195. doi.org/10.1007/BF00385390
  9. Fan, D., Hodges, D. M., Critchley, A. T. & Prithiviraj, B. 2013. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 44:1873-1884. doi.org/10.1080/00103624.2013.790404
  10. Featonby-Smith, B. C. & Van Staden, J. 1983. The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci. Hortic. 20:137-146. doi.org/10.1016/0304-4238(83)90134-6
  11. Featonby-Smith, B. C. & Van Staden, J. 1987. Effects of seaweed concentrate on grain yield in barley. S. Afr. J. Bot. 53:125-128. doi.org/10.1016/S0254-6299(16)31446-6
  12. Food and Agriculture Organization of the United Nations. 2023. FAO-Fisheries and Aquaculture Information and Statistics Branch. Available from: https://www.fao.org/fishery/statistics-query/en/aquaculture. Accessed Dec 20, 2023.
  13. Guan, X., Li, J., Zhang, Z., et al. 2013. Characterizing the microbial culprit of white spot disease of the conchocelis stage of Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 25:1341-1348. doi.org/10.1007/s10811-013-9976-8
  14. Gui, T.-Y., Gao, D.-H., Ding, H.-C. & Yan, X.-H. 2022. Identification of respiratory burst oxidase homolog (Rboh) family genes from Pyropia yezoensis and their correlation with archeospore release. Front. Plant Sci. 13:929299. doi.org/10.3389/fpls.2022.929299
  15. Han, S., Song, H. I., Park, J. S., et al. 2023. Sargassum horneri and Ascophyllum nodosum extracts enhance thermal tolerance and antioxidant activity of Neopyropia yezoensis. J. Appl. Phycol. 35:201-207. doi.org/10.1007/s10811-022-02870-4
  16. Hurtado, A. Q. & Critchley, A. T. 2018. A review of multiple biostimulant and bioeffector benefits of AMPEP, an extract of the brown alga Ascophyllum nodosum, as applied to the enhanced cultivation and micropropagation of the commercially important red algal carrageenophyte Kappaphycus alvarezii and its selected cultivars. J. Appl. Phycol. 30:2859-2873. doi.org/10.1007/s10811-018-1407-4
  17. Hurtado, A. Q., Yunque, D. A., Tibubos, K. & Critchley, A. T. 2009. Use of Acadian marine plant extract powder from Ascophyllum nodosum in tissue culture of Kappaphycus varieties. J. Appl. Phycol. 21:633-639. doi.org/10.1007/s10811-008-9395-4
  18. Jaiswar, S., Dawange, P. S., Thanth, C. & Mantri, V. A. 2021. Apical, sub-apical, and basal explants of industrially exploited marine red alga Gracilaria salicornia exhibited differential response to commercial seaweed-derived plant bio-stimulants. J. Appl. Phycol. 33:3975-3985. doi.org/10.1007/s10811-021-02594-x
  19. Jayaraj, J., Wan, A., Rahman, M. & Punja, Z. K. 2008. Seaweed extract reduces foliar fungal diseases on carrot. Crop. Prot. 27:1360-1366. doi.org/10.1016/j.cropro.2008.05.005
  20. Kim, E.-Y., Choi, Y. H. & Nam, T.-J. 2018. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. Int. J. Mol. Med. 42:789-798. doi.org/10.3892/ijmm.2018.3650
  21. Kim, H.-S., Choi, H. G., Hwang, M.-S., Jeon, Y. J., Yarish, C. & Kim, J. K. 2022. Concise review of the genus Neopyropia (Rhodophyta: Bangiales). J. Appl. Phycol. 34:1805-1824. doi.org/10.1007/s10811-022-02776-1
  22. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. doi.org/10.1007/s10811-006-9150-7
  23. Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13. doi.org/10.4490/algae.2017.32.3.3
  24. Krajnc, A. U., Ivanus, A., Kristl, J. & Susek, A. 2012. Seaweed extract elicits the metabolic responses in leaves and enhances growth of Pelargonium cuttings. Eur. J. Hortic. Sci. 77:170-181.
  25. Lewin, J. 1966. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1-12. doi.org/10.2216/i0031-8884-6-1-1.1
  26. Li, S. 1989. Physio-ecological characteristics of monospores and monosporelings of Porphyra yezoensis Ueda and their application in cultivation. Stud. Mar. Sin. 30:81-92.
  27. Li, S. & Cui, G. 1980. An observation on the growth and development of sporelings from conchospores and monospores of Porphyra yezoensis. Oceanol. Limnol. Sin. 4:370-374.
  28. Li, S. Y. 1984. The ecological characteristics of monospores of Porphyra yezoensis Ueda and their use in cultivation. Hydrobiologia 116/117:255-258. doi.org/10.1007/BF00027679
  29. Lotze, E. & Hoffman, E. W. 2016. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J. Appl. Phycol. 28:1379-1386. doi.org/10.1007/s10811-015-0644-z
  30. Loureiro, R. R., Reis, R. P. & Marroig, R. G. 2014. Effect of the commercial extract of the brown alga Ascophyllum nodosum Mont. On Kappaphycus alvarezii (Doty) Doty ex P.C. Silva in situ submitted to lethal temperatures. J. Appl. Phycol. 26:629-634. doi.org/10.1007/s10811-013-0085-5
  31. Masny, A., Basak, A. & Zurawicz, E. 2004. Effect of foliar applications of Kelpak SL and Goemar BM 86 preparations on yield and fruit quality in two strawberry cultivars. J. Fruit Ornam. Plant Res. 12:23-27.
  32. Norrie, J., Branson, T. & Keathley, P. E. 2002. Marine plant extracts impact on grape yield and quality. Acta Hortic. 594:315-319. doi.org/10.17660/ActaHortic.2002.594.38
  33. Notoya, M., Kikuchi, N., Matsuo, M., Aruga, Y. & Miura, A. 1993. Culture studies of four species of Porphyra (Rhodophyta) from Japan. Nippon Suisan Gakkaishi 59:431-436. doi.org/10.2331/suisan.59.431
  34. Raven, J. A., Beardall, J. & Giordano, M. 2014. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121:111-124. doi.org/10.1007/s11120-013-9962-7
  35. Rayorath, P., Jithesh, M. N., Farid, A., et al. 2008. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 20:423-429. doi.org/10.1007/s10811-007-9280-6
  36. Rengasamy, K. R. R., Kulkarni, M. G., Pendota, S. C. & Van Staden, J. 2016. Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol: a biologically active phenolic molecule from brown seaweed. N. Biotechnol. 33:273-279. doi.org/10.1016/j.nbt.2015.11.002
  37. Robertson-Andersson, D., Leitao, D., Bolton, J. J., Anderson, R. J., Njobeni, A. & Ruck, K. 2006. Can kelp extract (KELPAK) be useful in seaweed mariculture? J. Appl. Phycol. 18:315-321. doi.org/10.1007/s10811-006-9030-1
  38. Ryu, S., Cho, S., Park, S., et al. 2001. Cloning of the cel9A gene and characterization of its gene product from marine bacterium Pseudomonas sp. SK38. Appl. Microbiol. Biotechnol. 57:138-145. doi.org/10.1007/s002530100743
  39. Shukla, P. S., Shotton, K., Norman, E., Neily, W., Critchley, A. T. & Prithiviraj, B. 2018. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10:plx051. doi.org/10.1093/aobpla/plx051
  40. Sosnowski, J., Jankowski, K., Truba, M. & Malinowska, E. 2019. Effect of Ecklonia maxima extract on photosynthesis activity and chlorophyll content of Medicago × varia Martyn leaves. Chil. J. Agric. Res. 79:257-265. doi.org/10.4067/S0718-58392019000200257
  41. Suda, M. & Mikami, K. 2020. Reproductive responses to wounding and heat stress in gametophytic thalli of the red alga Pyropia yezoensis. Front. Mar. Sci. 7:394. doi.org/10.3389/fmars.2020.00394
  42. Takahashi, M., Saga, N. & Mikami, K. 2010. Photosynthesis-dependent extracellular Ca2+ influx triggers an asexual reproductive cycle in the marine red macroalga Porphyra yezoensis. Am. J. Plant. Sci. 1:1-11. doi.org/10.4236/ajps.2010.11001
  43. Umanzor, S., Han, S., Song, H.-I., et al. 2022a. Ascertaining the interactions of brown seaweed-derived biostimulants and seawater temperature on spore release, germination, conchocelis, and newly formed blades of the commercially important red alga Neopyropia yezoensis? Algal Res. 64:102692. doi.org/10.1016/j.algal.2022.102692
  44. Umanzor, S., Han, S., Song, H.-I., et al. 2022b. Enhancements provided by the use of an Ascophyllum nodosum extract can be transferred through archeospores in the red alga Neopyropia yezoensis (Ueda) L.-E. Yang & J. Brodie. Aquat. Bot. 177:103481. doi.org/10.1016/j.aquabot.2021.103481
  45. Umanzor, S., Jang, S., Antosca, R., Critchley, A. T., Yarish, C. & Kim, J. K. 2020a. Optimizing the application of selected biostimulants to enhance the growth of Eucheumatopsis isiformis, a carrageenophyte with commercial value, as grown in land-based nursery systems. J. Appl. Phycol. 32:1917-1922. doi.org/10.1007/s10811-020-02091-7
  46. Umanzor, S., Shin, S., Yarish, C., Augyte, S. & Kim, J. K. 2020b. Exploratory evaluation of the effects of Kelpak® seaweed extract on cultivated kelp Saccharina spp. exposed to sublethal and lethal temperatures. J. World Aquac. Soc. 51:960-969. doi.org/10.1111/jwas.12687
  47. Van Staden, J., Beckett, R. P. & Rijkenberg, M. J. 1995. Effect of seaweed concentrate on the growth of the seedlings of three species of Eucalyptus. S. Afr. J. Bot. 61:169-172. doi.org/10.1016/S0254-6299(15)30513-5
  48. Waaland, J. R., Dickson, L. G. & Watson, B. A. 1990. Protoplast isolation and regeneration in the marine red alga Porphyra nereocystis. Planta 181:522-528. doi.org/10.1007/BF00193005
  49. Wada, E. 1941. Experimental studies on the life history of Porphyra tenera Kjellm. Bull. Jpn. Soc. Sci. Fish 10:47-59.
  50. Wally, O. S. D., Critchley, A. T., Hiltz, D., et al. 2013. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 32:324-339. doi.org/10.1007/s00344-012-9301-9
  51. Wang, S. J. 1985. Cultivation of Porphyra. In Tseng, C. K., Wang, S. J., Liu, S. J., et al. (Eds.) Seaweed Cultivation. Shanghai Science and Technical Publishers, Shanghai, pp. 145-150.
  52. Wang, W.-J., Zhu, J.-Y., Xu, P., et al. 2008. Characterization of the life history of Bangia fuscopurpurea (Bangiaceae, Rhodophyta) in connection with its cultivation in China. Aquaculture 278:101-109. doi.org/10.1016/j.aquaculture.2008.01.008
  53. Watanabe, S., Matsumoto, M., Hakomori, Y., Takagi, H., Shimada, H. & Sakamoto, A. 2014. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ. 37:1022-1036. doi.org/10.1111/pce.12218
  54. Yoshie, Y., Suzuki, T., Shirai, T. & Hirano, T. 1993. Free amino acids and fatty acids composition in dried nori of various culture locations and prices. Nippon Suisan Gakkaishi 59:1769-1775. doi.org/10.2331/suisan.59.1769