• Title/Summary/Keyword: Kelpak

Search Result 3, Processing Time 0.017 seconds

Effect of Kelpak® on the promotion of in vitro rooting in transgenic rose plantlets (Kelpak® 침지 처리에 의한 형질전환 장미 기내 식물체 발근 촉진)

  • Lee, Su Young;Kwon, O Hyeon;Lee, Hye Jin;Kim, Won Hee
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.212-215
    • /
    • 2014
  • In order to promote in vitro rooting in SOD2-transgenic rose plantlets, which were not well rooted in a rooting medium (MS medium with NAA $0.03mg{\cdot}L^{-1}$), we dipped the plantlets into liquid $Kelpak^{(R)}$ before placing them in the rooting medium. After 4 weeks, $Kelpak^{(R)}$ significantly promoted in vitro rooting in the plantlets. Therefore, $Kelpak^{(R)}$ can be used successfully to aid in the in vitro rooting of rose plantlets with roots that are not well-generated.

Effects of biostimulants, AMPEP and Kelpak on the growth and asexual reproduction of Pyropia yezoensis (Bangiales, Rhodophyta) at different temperatures

  • Sook Kyung Shin;Qikun Xing;Ji-Sook Park;Charles Yarish;Fanna Kong;Jang K. Kim
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Acadian marine plant extract powder (AMPEP) and Kelpak are commercial biostimulants derived from brown algae Ascophyllum nodosum. This study was to determine if AMPEP and Kelpak can induce thermal resistance in Pyropia yezoensis. P. yezoensis blades were exposed to different concentrations (control: 0, low: 0.001, high: 1 ppm) of AMPEP and Kelpak at 10℃ for 6 and 7 days, respectively. Those blades were then cultivated in von Stosch enriched seawater medium at different temperatures (10, 15, 20, and 25℃) with 12 : 12 L : D photoperiod and 100 µmol m-2 s-1 of photosynthetically active radiation for additional 15 days. Results showed that P. yezoensisreproduced archeospores at 20 and 25℃ at all biostimulant conditions within 15 days. At lower temperatures (10 and 15℃), only AMPEP-treated P. yezoensis reproduced archeospores. P. yezoensis exposed to 1 ppm Kelpak exhibited higher phycoerythrin and phycocyanin contents than control and 0.001 ppm conditions at 15℃. AMPEP-treated conditions showed higher phycoerythrin and phycocyanin contents than control at 10℃. These results suggest that AMPEP and Kelpak may not enhance the thermal resistance of P. yezoensis. However, AMPEP stimulated archeospores release at lower temperatures. The treatment of AMPEP and Kelpak also increased the pigment contents in P. yezoensis. These results suggest that the use of seaweed-derived biostimulants can provide some economic benefits in P. yezoensis aquaculture. The enhancement of archeospores formation by AMPEP at lower temperature may also increase the productivity since Pyropia farming relies on the accumulation of secondary seedings via asexual reproduction.

Effects of Natural Bioactive Products on the Growth and Ginsenoside Contents of Panax ginseng Cultured in an Aeroponic System

  • Kim, Geum-Soog;Lee, Seung-Eun;Noh, Hyung-Jun;Kwon, Hyuck;Lee, Sung-Woo;Kim, Seung-Yu;Kim, Yong-Bum
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.430-441
    • /
    • 2012
  • This study was conducted to evaluate the effects of natural bioactive products such as Manda enzyme (T1), Yangmyeongwon (T2), effective microorganisms (T3), and Kelpak (T4) on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system using a two-layer vertical type of nutrient bath under natural light conditions. The growth of ginseng plants showed specific characteristics according to the positions in which they were cultured due to the difference of light transmittance and temperature in the upper and lower layers during aeroponic culture in a two-layer vertical type of system. The growth of the aerial part of the leaves and stems of ginseng plants cultured in the lower layer (4,000 to 6,000 lx, $23^{\circ}C$ to $26^{\circ}C$) of the nutrient bath was observed to be superior to that of the ginseng plants cultured in the upper layer (12,000 to 15,000 lx, $25^{\circ}C$ to $28^{\circ}C$). The leaf area was significantly larger in the treatment of T2 and T4 (46.70 $cm^2$) than with other treatments. Conversely, the values of the root weight and root diameter were higher in ginseng plants cultured in the upper layer of the nutrient bath. The root weight was significantly heavier in the treatment of T4 (6.46 g) and T3 (6.26 g) than with other treatments. The total ginsenoside content in the leaves and roots was highest in the ginseng plants cultured by the treatment of T1, at 16.20%, while the total ginsenoside content obtained by other treatments decreased in the order of T4, T5 (control), T2, and T3, at 13.21%, 12.30%, 14.84%, and 14.86%, respectively. The total ginsenoside content of the ginseng leaves was found to be significantly higher in the treatment of T1 in the lower layer of the nutrient bath, at 15.30%, while the content of the ginseng roots in the treatments of T3 and T4, at 1.27% and 1.23%, respectively, was significantly higher than in other treatments in the upper layer of the nutrient bath.