DOI QR코드

DOI QR Code

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil

네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구

  • Youngbin Kim (Department of Chemical Engineering, Kongju National University) ;
  • Seunghee Lee (Department of Chemical Engineering, Kongju National University) ;
  • Minseok Sim (Department of Chemical Engineering, Kongju National University) ;
  • Yehee Kim (Department of Chemical Engineering, Kongju National University) ;
  • Rajendra Joshi (Department of Chemical Science and Engineering, School of Engineering, Kathmandu University) ;
  • Jong-Ki Jeon (Department of Chemical Engineering, Kongju National University)
  • 김영빈 (공주대학교 화학공학부) ;
  • 이승희 (공주대학교 화학공학부) ;
  • 심민석 (공주대학교 화학공학부) ;
  • 김예희 (공주대학교 화학공학부) ;
  • ;
  • 전종기 (공주대학교 화학공학부)
  • Received : 2023.12.25
  • Accepted : 2024.01.05
  • Published : 2024.03.31

Abstract

Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.

비식용 작물인 네팔산 Jatropha 씨앗으로부터 추출한 식물성 오일을 원료로 사용하고, 에스테르화 반응과 전이에스테르화 반응으로 구성된 2-step 공정을 거쳐서 바이오디젤로 전환하였다. Jatropha 오일에 함유되어 있는 유리지방산과 메탄올과의 에스테르화 반응에 Amberlyst-15 촉매를 적용하였으며, 자트로파 오일의 산가를 11.0으로부터 0.26 mgKOH/g까지 낮추었다. 산가가 0.26 mgKOH/g인 Jatropha 오일과 메탄올을 원료로 사용하고 NaOH/γ-Al2O3 촉매를 사용하여 전이에스테르화 반응을 통해서 바이오디젤을 제조하였다. NaOH 담지량이 3 wt%에서 25 wt%로 증가함에 따라 비표면적은 129 m2/g에서 28 m2/g으로, 기공 부피는 0.249 m3/g에서 0.129 cm3/g으로 감소하였다. 또한, NaOH의 담지량이 증가할수록 NaOH/γ-Al2O3 촉매의 염기점의 양과 세기가 동시에 증가하였다. NaOH/γ-Al2O3 촉매의 최적 NaOH 담지량은 12 wt%인 것을 확인하였다. NaOH/γ-Al2O3 촉매를 이용한 Jatropha oil의 전이에스테르화 반응에서 최적 온도를 65 ℃로 선정하였다. 교반속도가 150 RPM 이하의 조건에서는 전이에스테르화 반응 속도가 외부 물질 전달의 영향을 받았으나, 그 이상의 교반속도에서는 외부 물질 전달의 영향이 크지 않았다.

Keywords

Acknowledgement

This research was supported by International Cooperation Program through the National Research Foundation of Korea (NRF-2019K1A3A9A01000010).

References

  1. Sawangkeaw, R., Tejvirat, P., Ngamcharassrivichai, C., and Ngamprasertsith, S., "Supercritical Transesterification of Palm Oil and Hydrated Ethanol in a Fixed Bed Reactor with a CaO/ Al2O3 Catalyst," Energies, 5(4), 1062-1080 (2012).
  2. Agarwal, M., Chauhan, G., Chaurasia, S. P., and Singh, K., "Study of Catalytic Behavior of KOH as Homogeneous and Heterogeneous Catalyst for Biodiesel Production," J. Taiwan Inst. Chem. Eng., 43(1), 89-94 (2012).
  3. Demirbas, A., "Progress and Recent Trends in Biodiesel Fuels," Energy Convers. Manag., 50(1), 14-34 (2009).
  4. Choi, J. D., Kim, D. K., Park, J. Y., Rhee, Y. W., and Lee, J. S., "Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production," Korean Chem. Eng. Res., 46(1), 194-199 (2008).
  5. Bournay, L., Casanave, D., Delfort, B., Hillion, G., and Chodorge, J. A., "New Heterogeneous Process for Biodiesel Prodcution : A Way to Improve the Quality and the Value of the Crude Glycerin Produced by Biodiesel Plants," Catal. Today, 106(1-4), 190-192 (2005).
  6. Kiss, A. A., Dimian, A. C., and Rothenberg, G., "Solid Acid Catalysts for Biodiesel Production - Towards Sustainable Energy," Adv. Synth. Catal., 348(1-2), 75-81 (2006).
  7. Sim, M., Lee, S., Kim, Y., Ku, H., Woo, J., Joshi, R., and Jeon, J. K., "Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil," Clean Technology, 27(2), 198-204 (2021).
  8. Chai, M., Tu, Q., Lu, M., and Yang, Y. J., "Production of Biodiesel from Non-edible Jatropha Curcas Oil Via Transesterification Using Bi2O3-La2O3 Catalyst," Fuel Process. Technol., 88, 1257-1262 (2014).
  9. Lu, H., Reddy, E. P., and Smirniotis, P. G., "Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures," Ind. Eng. Chem. Res., 45(11), 3944-3949 (2006).
  10. Ozbay, N., Oktar, N., and Tapan, N. A., "Esterification of Free Fatty Acids in Waste Cooking Oils (WCO) : Role of Ion-Eschange Resins," Fuel, 87(10-11), 1789-1798 (2008).
  11. Narasimharao, K., Lee, A., and Wilson, K., "Catalysts in Production of Biodiese : A Review," J. Biobased Mater. Bioenergy, 1, 19-30 (2007).
  12. Gebremariam, S. N. and Marchetti, J. M., "Economics of Biodiesel Production : Review," Energy Convers. Manag., 168, 74-84 (2018).
  13. Shah, S., Sharma, S., and Gupta, M. N., "Biodiesel Preparation by Lipase-Catalyzed Tranesterification of Jatropha Oil," Energy Fuels, 18(1), 154-159 (2004).
  14. Vyas, A. P., Subrahmanyam, N., and Patel, P. A., "Production of Biodiesel through Transesterification of Jatropha Oil Using KNO3/Al2O3 Solid Catalyst," Fuel, 88(4), 625-628 (2009).
  15. Woo, J., Joshi, R., Park, Y. K., and Jeon, J. K., "Biodiesel Production from Jatropha Seeds with Bead-Type Heterogeneous Catalyst," Korean J. Chem. Eng., 38(4), 763-770 (2021).
  16. Ban, S., Shrestha, R., Chaudhary, Y., Jeon, J. K., and Joshi, R., "Process Simulation and Economic Analysis of Dolomite Catalyst Based Biodiesel Production from Nepalese Jatropha Curcas," Clean. Chem. Eng., 2, 100029 (2022).
  17. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution," Pure Appl. Chem., 87(9-10), 1051-1069 (2015).
  18. Seo, G. and Kim, G. J., "Catalyst: Basic Concept, Structure, Function," Gyomoon, Paju (Korea), 145 (2014).