DOI QR코드

DOI QR Code

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model

0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구

  • Eunji Lee (Affiliation Convergence Manufacturing System Engineering, University of Science and Technology) ;
  • Won Yang (Affiliation Convergence Manufacturing System Engineering, University of Science and Technology) ;
  • Uendo Lee (Affiliation Convergence Manufacturing System Engineering, University of Science and Technology) ;
  • Youngjae Lee (Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology)
  • 이은지 (과학기술연합대학원대학교 청정공정에너지시스템공학) ;
  • 양원 (과학기술연합대학원대학교 청정공정에너지시스템공학) ;
  • 이은도 (과학기술연합대학원대학교 청정공정에너지시스템공학) ;
  • 이영재 (한국생산기술연구원 지속가능기술연구소)
  • Received : 2023.12.19
  • Accepted : 2024.01.22
  • Published : 2024.03.31

Abstract

Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.

전 세계적으로 플라스틱 폐기물로 인한 환경문제가 지속적으로 제기되었으며, 코로나19 이후 플라스틱 폐기물은 급증하는 추세이다. 특히 PP와 PE는 전체 플라스틱 생산량의 절반 이상을 차지하며 두 소재의 폐기물량은 심각한 수준이다. 이에 따라 국내외적으로 플라스틱 재자원화를 위한 연구가 지속적으로 수행되고 있으며, 그중 열분해 기술은 한가지 대안이 될 수 있다. 본 연구에서는 PP와 PE의 열분해 생성 기체에 대한 화학 반응론적 거동을 예측하고자 비응축성 기체의 열분해 거동에 관한 수치해석 연구를 수행하였다. 기존의 열분해 문헌 조사를 통해 얻은 다양한 조성의 탄화수소 화학종을 기반으로 온도와 체류시간에 따라 생성물의 거동을 분석하였다. 수치해석 결과, 온도 및 체류시간이 증가함에 따라 비응축성 기체의 전환을 통해 H2와 고분자 탄화수소의 생성이 증가하였고 동시에 CH4와 C6H6 화학종은 감소하여 반응에 참여하는 것을 알 수 있었다. 또한 생성률 분석을 통해 C2H4의 분해 반응이 H2 생성에 지배적인 반응임을 확인하였고, C2H4의 함량이 PP 대비 많은 PE에서 C2H4의 분해 반응을 통해 H2 생성량이 증가하는 경향을 나타냈다. 향후 수치해석 결과에서 도출된 여러 변수를 통해 플라스틱에서 H2 및 탄소의 전환율을 높이는 방법을 실험적으로 확인할 계획이다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-석유대체 친환경 화학기술개발사업의 지원을 받아 수행된 연구임(No. 2022M3J5A1051728).

References

  1. Organization for Economic Co-operation and Development (OECD), "Global Plastics Outlook: Policy Scenarios to 2060," https://www.oecd.org/environment/global-plastics-outlook-aa1edf33-en.htm (accessed June 2022).
  2. Ministry of Environment, "Pre-Cycling Anti-Plastic Initiative," https://me.go.kr/skin/doc.html?fn=20221020183734.pdf&rs=/upload_private/preview/ (accessed October 2022).
  3. Choi, S., Choi, Y., Jeong, Y., Han, S., and Nguyen, Q., "Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model," New. Renew. Energy, 18(4), 12-21 (2022).
  4. Zajemska, M., Magdziarz, A., Iwaszko, J., Skrzyniarz, M., and Poskart, A., "Numerical and Experimental Analysis of Pyrolysis Process of RDF Containing a High Percentage of Plastic Waste," Fuel, 320, 123981 (2022).
  5. Sieradzka, M., Rajca, P., Zajemska, M., Mlonka-Medrala, A., and Magdziarz, A., "Prediction of Gaseous Products from Refuse Derived Fuel Pyrolysis Using Chemical Modelling Software-Ansys Chemkin-Pro," J. Cleaner Prod., 248, 119277 (2020).
  6. Bengtsson, H., "Kinetic Modelling of Gas-Phase Reactions of Polyethylene-Derived Pyrolysis Products in Steam Gasification," Master's thesis, Chalmers University of Technology, Sweden (2018).
  7. Hamadi, A., Piton Carneiro, L., Cano Ardila, F.-E., Abid, S., Chaumeix, N., and Comandini, A., "Probing PAH Formation from Heptane Pyrolysis in a Single-Pulse Shock Tube," Combust. Sci. Technol., 195(7), 1526-1542 (2023).
  8. Jung, S.-H., Cho, M.-H., Kang, B.-S., and Kim, J.-S., "Pyrolysis of a Fraction of Waste Polypropylene and Polyethylene for the Recovery of BTX Aromatics Using a Fluidized Bed Reactor," Fuel Process. Technol., 91(3), 277-284 (2010).
  9. Honus, S., Kumagai, S., Molnar, V., Fedorko, G., and Yoshioka, T., "Pyrolysis Gases Produced from Individual and Mixed PE, PP, PS, PVC, and PET - Part II: Fuel Characteristics," Fuel, 221, 361-373 (2018).
  10. Campuzano, F., Brown, R. C., and Martinez, J. D., "Auger Reactors for Pyrolysis of Biomass and Wastes," Renewable Sustainable Energy Rev., 102, 372-409 (2019).
  11. Park, K.-B., Jeong, Y.-S., and Kim, J.-S., "Activator-Assisted Pyrolysis of Polypropylene," Appl. Energy, 253, 113558 (2019).
  12. Mastral, F., Esperanza, E., Garcia, P., and Juste, M., "Pyrolysis of High-Density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time," J. Anal. Appl. Pyrolysis, 63(1), 1-15 (2002).
  13. Williams, P. T. and Williams, E. A., "Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock," J. Anal. Appl. Pyrolysis, 51(1-2), 107-126 (1999).
  14. Williams, P. T. and Williams, E. A., "Interaction of Plastics in Mixed-Plastics Pyrolysis," Energy & Fuels, 13(1), 188-196 (1999).
  15. Mertinkat, J., Kirsten, A., Predel, M., and Kaminsky, W., "Cracking Catalysts used as Fluidized Bed Material in the Hamburg Pyrolysis Process," J. Anal. Appl. Pyrolysis, 49(1-2), 87-95 (1999).
  16. Kee, R. J., Rupley, F. M., and Miller, J. A., "Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," SAND89-8009 (1989).
  17. Lee, B., Kim, H., Park, J., Lee, M., and Park, W., "A Study on NOx Formation Pathway of Methane-Air Lean Premixed Combustion by Using PSR Model," Transactions of KSAE, 17(5), 46-52 (2009).
  18. Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., and Faravelli, T., "Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels," Int. J. Chem. Kinet., 46(9), 512-542 (2014).
  19. Ranzi, E., Cavallotti, C., Cuoci, A., Frassoldati, A., Pelucchi, M., and Faravelli, T., "New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes," Combust. Flame, 162(5), 1679-1691 (2015).
  20. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A. P., and Law, C. K., "Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels," Prog. Energy Combust. Sci., 38(4), 468-501 (2012).
  21. Sengeh, J. V., Agboola, O. D., Li, H., Zhu, W., and Chung, T. M., "Investigation of Poly (Phenylacetylene) Derivatives for Carbon Precursor with High Carbon Yield and Good Solubility," Eur. Polym. J., 147, 110289 (2021).
  22. Echizen, K., Taniguchi, T., Nishimura, T., and Maeda, K., "Well-Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water-Soluble Stereoregular Telechelic Poly (Phenylacetylene)s," Angew. Chem., 134(26), e202202676 (2022).
  23. Jin, H., Ye, L., Yang, J., Jiang, Y., Zhao, L., and Farooq, A., "Inception of Carbonaceous Nanostructures via Hydrogen-Abstraction Phenylacetylene-Addition Mechanism," J. Am. Chem. Soc., 143(49), 20710-20716 (2021).
  24. Reizer, E., Viskolcz, B., and Fiser, B., "Formation and Growth Mechanisms of Polycyclic Aromatic Hydrocarbons: A Mini-Review," Chemosphere, 291, 132793 (2022).