Acknowledgement
The authors are deeply grateful to the referee for suggestions that led to significant improvements in the presentation.
References
- A. Abid and J. Zou, Stochastic EM for shuffled linear regression, arXiv preprint arXiv:1804.00681 (2018).
- A. Bjorck, Least squares methods, Handbook of numerical analysis 1 (1990), 465-652.
- E. Borensztein, J. De Gregorio and J.W. Lee, How does foreign direct investment affect economic growth?, J. Int. Econ. 45 (1998), 115-135. https://doi.org/10.1016/S0022-1996(97)00033-0
- P. David, D. Dementhon, R. Duraiswami and H. Samet, Softposit: Simultaneous pose and correspondence determination, Int. J. Comput. Vis. 59 (2004), 259-284. https://doi.org/10.1023/B:VISI.0000025800.10423.1f
- C. Flammer, Does corporate social responsibility lead to superior financial performance? A regression discontinuity approach, Manage Sci. 61 (2015), 2549-2568. https://doi.org/10.1287/mnsc.2014.2038
- R. Geretschlager and W. Janous, Generalized Rearrangement Inequalities, Am. Math. Mon. 108 (2001), 158-165. https://doi.org/10.1080/00029890.2001.11919737
- F.S. Gharehchopogh, T.H. Bonab and S.R. Khaze, A linear regression approach to prediction of stock market trading volume: a case study, Int. J. Supply Chain Manag. 4 (2013), 25.
- P.C. Hansen, V. Pereyra and G. Scherer, Least squares data fitting with applications, JHU Press, 2013.
- G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge: Cambridge University Press, 1952.
- B. Heshmaty and A. Kandel, Fuzzy linear regression and its applications to forecasting in uncertain environment, Fuzzy Sets Syst. 15 (1985), 159-191. https://doi.org/10.1016/0165-0114(85)90044-2
- D.J. Hsu, K. Shi and X. Sun, Linear regression without correspondence, Adv. Neural Inf. Process. Syst. 30 (2017).
- X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res. 9 (1999), 868-877. https://doi.org/10.1101/gr.9.9.868
- M.G. Lagoudakis and R. Parr, Least-squares policy iteration, J. Mach. Learn. Res. 4 (2003), 1107-1149.
- P. Meer, D. Mintz, A. Rosenfeld and D.Y. Kim, Robust regression methods for computer vision: A review, Int. J. Comput. Vis. 6 (1991), 59-70. https://doi.org/10.1007/BF00127126
- J. Merlo, B. Chaix, H. Ohlsson, A. Beckman, K. Johnell, P. Hjerpe and K. Larsen, A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena, J. Epidemiology Community Health 60 (2006), 290-297.
- D.C. Montgomery, E.A. Peck and G.G. Vining, Introduction to Linear Regression Analysis, John Wiley and Sons, 2021.
- A. Pananjady, M.J. Wainwright and T.A. Courtade, Linear regression with shuffled data: Statistical and computational limits of permutation recovery, IEEE Trans. Inf. Theory 64 (2017), 3286-3300. https://doi.org/10.1109/TIT.2017.2776217
- R.W. Parks, Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated, J. Am. Stat. Assoc. 62 (1967), 500-509. https://doi.org/10.1080/01621459.1967.10482923
- L. Peng, X. Song, M.C. Tsakiris, H. Choi, L. Kneip and Y. Shi, Algebraically-initialized expectation maximization for header-free communication, In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5182-5186), IEEE, 2019.
- K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proceedings of the IEEE 86 (1998), 2210-2239. https://doi.org/10.1109/5.726788
- W.S. Robinson, A method for chronologically ordering archaeological deposits, Am. Antiq. 16.4 (1951), 293-301. https://doi.org/10.2307/276978
- C. Rose and I.S. Mian, Signaling with identical tokens: Upper bounds with energy constraints, 2014 IEEE International Symposium on Information Theory, 2014, 1817-1821.
- C. Rose, I.S. Mian and R. Song, Timing channels with multiple identical quanta, arXiv preprint arXiv:1208.1070 (2012).
- X. Song, H. Choi and Y. Shi, Permuted linear model for header-free communication via symmetric polynomials, 2018 IEEE International Symposium on Information Theory (ISIT) (pp. 661-665), IEEE, 2018.
- L. Peng and M.C. Tsakiris, Homomorphic sensing of subspace arrangements, Appl. Comput. Harmon. Anal. 55 (2021), 466-485. https://doi.org/10.1016/j.acha.2021.06.008
- M.C. Tsakiris, L. Peng, A. Conca, L. Kneip, Y. Shi and H. Choi, An algebraic-geometric approach for linear regression without correspondences, IEEE Trans. Inf. Theory 66 (2020), 5130-5144. https://doi.org/10.1109/TIT.2020.2977166
- J. Unnikrishnan, S. Haghighatshoar and M. Vetterli, Unlabeled sensing with random linear measurements, IEEE Trans. Inf. Theory 64 (2018), 3237-3253. https://doi.org/10.1109/TIT.2018.2809002
- V. Vapnik, S. Golowich and A. Smola, Support vector method for function approximation, regression estimation and signal processing, Adv. Neural Inf. Process. Syst. 9 (1996).
- D.J. Zimmerman, Regression toward mediocrity in economic stature, Am. Econ. Rev. (1992), 409-429.