Acknowledgement
The authors thankful to the reviewers for valuable suggestion to improve the manuscript.
References
- A. Buica, J.P. Fran,coise, and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Comm. Pure Appl. Anal. 6 (2007), 103-111. https://doi.org/10.3934/cpaa.2007.6.103
- A. Boulfoul, and A. Makhlouf, On the limit cycles for a class of fourth-order differential equations, International Journal of differential Equations and Applications 11 (2012), 135-144.
- D. Djedid, E.O. Bendib, and A. Makhlouf, Four-dimensional Zero-Hopf Bifurcation of Quadratic Polynomial Differential System, via Averaging Theory of Third Order, Journal of Dynamical and Control Systems 28 (2021), 1-16.
- A. Feddaoui, J. Llibre, C. Berhail, and A. Makhlouf, Periodic solutions for differential systems in ℝ3 and ℝ4, Applied Mathematics and Nonlinear Sciences 6 (2021), 373-380. https://doi.org/10.2478/amns.2020.2.00079
- J. Llibre, and A. Makhlouf, Periodic orbits of the fourth-order non-autonomous differential equation ????? +qü+pu = F(t, u, ?????, ü, ?????), Applied Mathematics and Computation 219 (2012), 827-836. https://doi.org/10.1016/j.amc.2012.06.047
- J. Llibre, and A. Makhlouf, On the limit cycles for a class of fourth-order differential equations, J. Phys. Math. Gen. 45 (2012), 55214.
- J. Llibre, D.D. Novas, and M.A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity 27 (2014), 563-583. https://doi.org/10.1088/0951-7715/27/3/563
- J. Llibre, and L. Roberto, On the periodic orbits of the third-order differential equation x'''- µx''+ x'- µx = εF(x, x', x'' ), Applied Mathematics Letters 26 (2013), 425-430. https://doi.org/10.1016/j.aml.2012.10.017
- J. Llibre, J. Yu, and X. Zhang, Limit cycles for a class of third-order differential equations, The Rocky Mountain Journal of Mathematics 40 (2010), 581-594.
- M.S. Mechee, F.A. Fawzi, Generalized Runge-Kutta integrators for solving fifth-order ordinary differential equations, Italian J. Pure Appl. Math. 45 (2021), 600-610.
- H. Melki, and A. Makhlouf, Maximum number of limit cycles for generalized Kukles differential system, Journal of Applied Analysis 29 (2023), 59-75.
- A. Menaceur, S. Boulaaras, A. Makhlouf, K. Rajagobal, and M. Abdalla, Limit cycles for fourth-order autonomous differential equations, Electronic Journal of Differential Equations 2012 (2012), 1-17.
- A.A. Rabia, and A. Makhlouf, Periodic solutions for differential systems in ℝ5 and ℝ6, Journal of Dynamical and Control Systems 29 (2022), 1-11.
- E.N. Rosenvasser, On the stability of nonlinear control systems described by fifth and sixth order differential equations, Automat. Remote Control 19 (1959), 91-93.
- J.A. Sanders, and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59 (1985), 33-66. https://doi.org/10.1007/978-1-4757-4575-7_3
- N. Sellami, and A. Makhlouf, Limit cycles for a class of fifth-order differential equations, Annals of Differential Equations 28 (2012), 202-219.
- N. Sellami, R. Mellal, B.B. Cherif, S.A. Idris, On the limit cycles for a class of perturbed fifth-order autonomous differential equations, Discrete Dynamics in Nature and Society 2021 (2021), 1-18. https://doi.org/10.1155/2021/6996805
- E. Tun,c, On the periodic solutions of certain fourth and fifth order vector differential equations, Mathematical Communications 10 (2005), 135-141.
- F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, New York, 1996.
- A.M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Applied mathematics letters 19 (2006), 1162-1167.
- Q. Yang, and H. Zhang. On the exact soliton solutions of fifth-order korteweg-de vries equation for surface gravity waves, Results in Physics 26 (2021), 104424.