DOI QR코드

DOI QR Code

LIMIT CYCLES FOR A CLASS OF FIFTH-ORDER DIFFERENTIAL EQUATIONS

  • ACHREF EDDINE TABET (Department of Mathematics, Laboratory LMA, University of Annaba) ;
  • AMAR MAKHLOUF (Department of Mathematics, Laboratory LMA, University of Annaba)
  • Received : 2023.06.20
  • Accepted : 2023.11.24
  • Published : 2024.01.30

Abstract

The purpose of this research is to investigate sufficient conditions for the existence of limit cycles of the fifth-order differential equation x(5) + (p2 + q2)$_{x}^{...}$ + p2q2$_{x}^{.}$ = εF(t, x, $_{x}^{.}$, $_{x}^{..}$, $_{x}^{...}$, $_{x}^{....}$), where p, q are rational numbers different from 0, p ≠ ±q, ε is a small real parameter, and F is a 2kπ-periodic function in the variable t. Also, we provide some applications.

Keywords

Acknowledgement

The authors thankful to the reviewers for valuable suggestion to improve the manuscript.

References

  1. A. Buica, J.P. Fran,coise, and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Comm. Pure Appl. Anal. 6 (2007), 103-111. https://doi.org/10.3934/cpaa.2007.6.103
  2. A. Boulfoul, and A. Makhlouf, On the limit cycles for a class of fourth-order differential equations, International Journal of differential Equations and Applications 11 (2012), 135-144.
  3. D. Djedid, E.O. Bendib, and A. Makhlouf, Four-dimensional Zero-Hopf Bifurcation of Quadratic Polynomial Differential System, via Averaging Theory of Third Order, Journal of Dynamical and Control Systems 28 (2021), 1-16.
  4. A. Feddaoui, J. Llibre, C. Berhail, and A. Makhlouf, Periodic solutions for differential systems in ℝ3 and ℝ4, Applied Mathematics and Nonlinear Sciences 6 (2021), 373-380. https://doi.org/10.2478/amns.2020.2.00079
  5. J. Llibre, and A. Makhlouf, Periodic orbits of the fourth-order non-autonomous differential equation ????? +qü+pu = F(t, u, ?????, ü, ?????), Applied Mathematics and Computation 219 (2012), 827-836. https://doi.org/10.1016/j.amc.2012.06.047
  6. J. Llibre, and A. Makhlouf, On the limit cycles for a class of fourth-order differential equations, J. Phys. Math. Gen. 45 (2012), 55214.
  7. J. Llibre, D.D. Novas, and M.A. Teixeira, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity 27 (2014), 563-583. https://doi.org/10.1088/0951-7715/27/3/563
  8. J. Llibre, and L. Roberto, On the periodic orbits of the third-order differential equation x'''- µx''+ x'- µx = εF(x, x', x'' ), Applied Mathematics Letters 26 (2013), 425-430. https://doi.org/10.1016/j.aml.2012.10.017
  9. J. Llibre, J. Yu, and X. Zhang, Limit cycles for a class of third-order differential equations, The Rocky Mountain Journal of Mathematics 40 (2010), 581-594.
  10. M.S. Mechee, F.A. Fawzi, Generalized Runge-Kutta integrators for solving fifth-order ordinary differential equations, Italian J. Pure Appl. Math. 45 (2021), 600-610.
  11. H. Melki, and A. Makhlouf, Maximum number of limit cycles for generalized Kukles differential system, Journal of Applied Analysis 29 (2023), 59-75.
  12. A. Menaceur, S. Boulaaras, A. Makhlouf, K. Rajagobal, and M. Abdalla, Limit cycles for fourth-order autonomous differential equations, Electronic Journal of Differential Equations 2012 (2012), 1-17.
  13. A.A. Rabia, and A. Makhlouf, Periodic solutions for differential systems in ℝ5 and ℝ6, Journal of Dynamical and Control Systems 29 (2022), 1-11.
  14. E.N. Rosenvasser, On the stability of nonlinear control systems described by fifth and sixth order differential equations, Automat. Remote Control 19 (1959), 91-93.
  15. J.A. Sanders, and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59 (1985), 33-66. https://doi.org/10.1007/978-1-4757-4575-7_3
  16. N. Sellami, and A. Makhlouf, Limit cycles for a class of fifth-order differential equations, Annals of Differential Equations 28 (2012), 202-219.
  17. N. Sellami, R. Mellal, B.B. Cherif, S.A. Idris, On the limit cycles for a class of perturbed fifth-order autonomous differential equations, Discrete Dynamics in Nature and Society 2021 (2021), 1-18. https://doi.org/10.1155/2021/6996805
  18. E. Tun,c, On the periodic solutions of certain fourth and fifth order vector differential equations, Mathematical Communications 10 (2005), 135-141.
  19. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, New York, 1996.
  20. A.M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Applied mathematics letters 19 (2006), 1162-1167.
  21. Q. Yang, and H. Zhang. On the exact soliton solutions of fifth-order korteweg-de vries equation for surface gravity waves, Results in Physics 26 (2021), 104424.