• Title/Summary/Keyword: shuffled regression

Search Result 4, Processing Time 0.021 seconds

Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects

  • Hadi Fattahi;Nasim Bayat
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2024
  • In the realm of rock excavation projects, precise estimation of the drilling rate index stands as a pivotal factor in strategic planning and cost assessment. This study introduces and evaluates two pioneering computational intelligence models designed for the prognostication of the drilling rate index, a pivotal parameter with direct implications for cost estimation in rock excavation projects. These models, denoted as the Relevance Vector Regression (RVR) optimized with the Invasive Weed Optimization algorithm (IWO) (RVR-IWO model) and the RVR integrated with the Shuffled Frog Leaping algorithm (SFL) (RVR-SFL model), represent a groundbreaking approach to forecasting drilling rate index. The RVR-IWO and RVR-SFL models were meticulously devised to harness the capabilities of computational intelligence and optimization techniques for drilling rate index estimation. This research pioneers the integration of IWO and SFL with RVR, constituting an unprecedented effort in forecasting drilling rate index. The primary objective of this study was to gauge the precision and dependability of these models in forecasting the drilling rate index, revealing significant distinctions between the two. In terms of predictive precision, the RVR-IWO model emerged as the superior choice when compared to the RVR-SFL model, underscoring the remarkable efficacy of the Invasive Weed Optimization algorithm. The RVR-IWO model delivered noteworthy results, boasting a Variance Account for (VAF) of 0.8406, a Mean Squared Error (MSE) of 0.0114, and a Squared Correlation Coefficient (R2) of 0.9315. On the contrary, the RVR-SFL model exhibited slightly lower precision, yielding an MSE of 0.0160, a VAF of 0.8205, and an R2 of 0.9120. These findings serve to highlight the potential of the RVR-IWO model as a formidable instrument for drilling rate index prediction, particularly within the framework of rock excavation projects. This research not only makes a significant contribution to the realm of drilling engineering but also underscores the broader adaptability of the RVR-IWO model in tackling an array of challenges within the domain of rock engineering. Ultimately, this study advances the comprehension of drilling rate index estimation and imparts valuable insights into the practical implementation of computational intelligence methodologies within the realm of engineering projects.

FINDING EXPLICIT SOLUTIONS FOR LINEAR REGRESSION WITHOUT CORRESPONDENCES BASED ON REARRANGEMENT INEQUALITY

  • MIJIN KIM;HYUNGU LEE;HAYOUNG CHOI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.149-158
    • /
    • 2024
  • A least squares problem without correspondences is expressed as the following optimization: Π∈Pminm, x∈ℝn ║Ax-Πy║, where A ∈ ℝm×n and y ∈ ℝm are given. In general, solving such an optimization problem is highly challenging. In this paper we use the rearrangement inequalities to find the closed form of solutions for certain cases. Moreover, despite the stringent constraints, we successfully tackle the nonlinear least squares problem without correspondences by leveraging rearrangement inequalities.

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

Optimization of PRISM Parameters and Digital Elevation Model Resolution for Estimating the Spatial Distribution of Precipitation in South Korea (남한 강수량 분포 추정을 위한 PRISM 매개변수 및 수치표고모형 최적화)

  • Park, Jong-Chul;Jung, Il-Won;Chang, Hee-Jun;Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.36-51
    • /
    • 2012
  • The demand for a climatological dataset with a regular spaced grid is increasing in diverse fields such as ecological and hydrological modeling as well as regional climate impact studies. PRISM(Precipitation-Elevation Regressions on Independent Slopes Model) is a useful method to estimate high-altitude precipitation. However, it is not well discussed over the optimization of PRISM parameters and DEM(Digital Elevation Model) resolution in South Korea. This study developed the PRISM and then optimized parameters of the model and DEM resolution for producing a gridded annual average precipitation data of South Korea with 1km spatial resolution during the period 2000-2005. SCE-UA (Shuffled Complex Evolution-University of Arizona) method employed for the optimization. In addition, sensitivity analysis investigates the change in the model output with respect to the parameter and the DEM spatial resolution variations. The study result shows that maximum radius within which station search will be conducted is 67km. Minimum radius within which all stations are included is 31km. Minimum number of stations required for cell precipitation and elevation regression calculation is four. Optimizing DEM resolution is $1{\times}1km$. This study also shows that the PRISM output very sensitive to DEM spatial resolution variations. This study contributes to improving the accuracy of PRISM technique as it applies to South Korea.