DOI QR코드

DOI QR Code

Recent Advances in Preparation and Supercapacitor Applications of Lignin-Derived Porous Carbon: A Review

  • Hae Woong Park (Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Hyo-Jun Ahn (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwang Chul Roh (Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2023.09.15
  • 심사 : 2023.11.24
  • 발행 : 2024.02.29

초록

Lignin-derived porous carbon has been identified as a versatile electrode material for supercapacitors (SCs) in energy storage systems (ESSs) owing to their intrinsic advantages including good electrical conductivity, low cost, high thermal and chemical stability, and high porosity, which stem from high surface, appropriate pore distribution, tailored morphologies, heterostructures, and diverse derivates. In this review, to provide a fundamental understanding of the properties of lignin, we first summarize the origin, historical development, and basic physicochemical properties. Next, we describe essential strategies for the preparation of lignin-derived porous carbon electrode materials and then highlight the latest advances in the utilization of lignin-derived porous carbon materials as advanced electrode materials. Finally, we provide some of our own insights into the major challenges and prospective research directions of lignin-derived porous carbon materials for supercapacitors. We believe that this review will provide general guidance for the design of next-generation electrode materials for supercapacitors.

키워드

과제정보

This work was supported by the Industrial Strategic Technology Development Program (20012763, Development of petroleum residue based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This work was also supported by the Technology Innovation Program (RS-2022-00156080, Development of electrical double layer capacitors for power supplement of hydrogen forklift) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

참고문헌

  1. M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, Science, 2002, 298, 981-987. https://doi.org/10.1126/science.1072357
  2. Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, and K. Barta, Chem. Rev., 2018, 118(2), 614-678. https://doi.org/10.1021/acs.chemrev.7b00588
  3. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr, J. P. Hallett, D. J. Leak, and C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science, 2006, 311, 484-489. https://doi.org/10.1126/science.1114736
  4. M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust, Science, 2007, 315, 804-807. https://doi.org/10.1126/science.1137016
  5. C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff, Science, 2012, 337, 695-699. https://doi.org/10.1126/science.1218930
  6. P. McKendry, Bioresour. Technol., 2002, 83(1), 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
  7. F. W. Lucas, R. G. Grim, S. A. Tacey, C. A. Downes, J. Hasse, A. M. Roman, C. A. Farberow, J. A. Schaidle, and A. Holewinski, ACS Energy Lett., 2021, 6(4), 1205-1270.
  8. A. Halba, S. K. Thengane, and P. Arora, Energy Fuels, 2023, 37(1), 19-35. https://doi.org/10.1021/acs.energyfuels.2c02907
  9. M. Qiu, Q. Wang, Y. Chu, Z. Yuan, H. Song, Z. Chen, and Z. Wu, PLoS One, 2012, 7(4), e35906.
  10. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, and C. He, Carbon, 2016, 100, 151-157. https://doi.org/10.1016/j.carbon.2015.12.075
  11. H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Zhu, G. Henriksson, M. E. Himmel, and L. Hu, Chem. Rev., 2016, 116(16), 9305-9374. https://doi.org/10.1021/acs.chemrev.6b00225
  12. M. Li, Q. Tu, X. Long, Q. Zhang, H. Jiang, C. Chen, S. Wang, and D. Min, Int. J. Biol. Macromol., 2021, 166, 1526-1534. https://doi.org/10.1016/j.ijbiomac.2020.11.032
  13. Y. Liu, X. Wang, Q. Wu, W. Pei, M. J. Teo, Z. S. Chen, and C. Huang, Int. J. Biol. Macromol., 2022, 222, 994-1006. https://doi.org/10.1016/j.ijbiomac.2022.09.267
  14. J. H. Park, H. H. Rana, J. Y. Lee, and H. S. Park, J. Mater. Chem. A, 2019, 7, 16962-16968. https://doi.org/10.1039/C9TA03519B
  15. J. S. Yeon, S. H. Park, J. Suk, H. Lee, and H. S. Park, Chem. Eng. J., 2020, 382, 122946.
  16. D. Bajwa, G. Pourhashem, A. H. Ullah, and S. Bajwa, Ind. Crops Prod., 2019, 139, 111526.
  17. T. M. Budnyak, A. Slabon, and M. H. Sipponen, ChemSusChem, 2020, 13(17), 4344-4355. https://doi.org/10.1002/cssc.202000216
  18. L. M. C. L. K. Curran, L. T. M. Pham, K. L. Sale, and B. A. Simmons, Biotechnol. Adv., 2022, 54, 107809.
  19. J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, Chem. Rev., 2010, 110(6), 3552-3599. https://doi.org/10.1021/cr900354u
  20. Y. Li, L. Shuai, H. Kim, A. H. Motagamwala, J. K. Mobley, F. Yue, Y. Tobimatsu, D. Havkin-Frenkel, F. Chen, R. A. Dixon, J. S. Luterbacher, J. A. Dumesic, and J. Ralph, Sci. Adv., 2018, 4, eaau2968.
  21. R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. Bruijnincx, and B. M. Weckhuysen, Angew. Chem. Int. Ed., 2016, 55(29), 8164-8215. https://doi.org/10.1002/anie.201510351
  22. D. Wang, S. H. Lee, J. Kim, and C. B. Park, ChemSusChem, 2020, 13(11), 2807-2827. https://doi.org/10.1002/cssc.202000394
  23. J. Zhu, C. Yan, X. Zhang, C. Yang, M. Jiang, and X. Zhang, Prog. Energy Combust. Sci., 2020, 76, 100788.
  24. H. Liu, T. Xu, K. Liu, M. Zhang, W. Liu, H. Li, H. Du, and C. Si, Ind. Crops Prod., 2021, 165, 113425.
  25. G. Milczarek, Lignosulfonate-modified electrode for electrocatalytic reduction of acidic nitrite, in: Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, Wiley-VCH, New York, 2008, 20(2), 211-214.
  26. F. N. Ajjan, M. J. Jafari, T. Rebis, T. Ederth, and O. Inganas, J. Mater. Chem. A, 2015, 3, 12927-12937. https://doi.org/10.1039/C5TA00788G
  27. G. Milczarek and O. Inganas, Science, 2012, 335, 1468-1471. https://doi.org/10.1126/science.1215159
  28. F. G. Calvo-Flores and J. A. Dobado, ChemSusChem, 2010, 3(11), 1227-1235. https://doi.org/10.1002/cssc.201000157
  29. E. Adler, Wood Sci. Technol., 1977, 11, 169-218. https://doi.org/10.1007/BF00365615
  30. J. Erdmann, Justus Liebigs Ann. Chem., 1866, 138(1), 1-19. https://doi.org/10.1002/jlac.18661380102
  31. R. E. de Souza, F. J. B. Gomes, E. Brito, R. C. C. Lelis, L. A. R. Batalha, F. A. Santos, and D. L. Junior, J. Appl. Biotechnol. Bioeng, 2020, 7(3), 100-105.
  32. G. A. Smook, M. J. Kocurek, Joint Textbook Committee of the Paper Industry, Technical Association of the Pulp and Paper Industry, and Canadian Pulp and Paper Association, Handbook for pulp & paper technologists, TAPPI, 1982.
  33. P. Klason, G. Heidenstam, and E. Norlin, Ark. Kemi, Mineral. Geol, 1908, 3, 1-17.
  34. P. Klason, Berichte der deutschen chemischen Gesellschaft (A and B Series), 1920, 53(5), 706-711.
  35. F. E. Brauns, Econ. Bot., 1948, 2, 419-435. https://doi.org/10.1007/BF02859496
  36. J. Wang, D. Zhang, and F. Chu, Adv. Mater., 2021, 33(28), 2001135.
  37. B. M. Upton and A. M. Kasko, Chem. Rev., 2016, 116(4), 2275-2306. https://doi.org/10.1021/acs.chemrev.5b00345
  38. S. Chatterjee and T. Saito, ChemSusChem, 2015, 8(23), 3941-3958. https://doi.org/10.1002/cssc.201500692
  39. S.-C. Sun, Y. Xu, J.-L. Wen, T.-Q. Yuan, and R.-C. Sun, Green Chem., 2022, 24, 5709-5738. https://doi.org/10.1039/D2GC01503J
  40. D. Wang, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y. Zeng, T. Luo, and Z. Mei, Bioresour. Technol., 2018, 249, 117-124. https://doi.org/10.1016/j.biortech.2017.09.197
  41. K. H. Kim, T. Dutta, J. Sun, B. Simmons, and S. Singh, Green Chem., 2018, 20, 809-815. https://doi.org/10.1039/C7GC03029K
  42. W. Schutyser, a. T. Renders, S. Van den Bosch, S.-F. Koelewijn, G. Beckham, and B. F. Sels, Chem. Soc. Rev., 2018, 47, 852-908. https://doi.org/10.1039/C7CS00566K
  43. L. A. Z. Torres, A. L. Woiciechowski, V. O. de Andrade Tanobe, S. G. Karp, L. C. G. Lorenci, C. Faulds, and C. R. Soccol, J. Clean. Prod., 2020, 263, 121499.
  44. J. H. Lora and W. G. Glasser, J. Polym. Environ., 2002, 10, 39-48. https://doi.org/10.1023/A:1021070006895
  45. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, Ind. Crops Prod., 2011, 33, 259-276. https://doi.org/10.1016/j.indcrop.2010.10.022
  46. T. Aro and P. Fatehi, ChemSusChem, 2017, 10(9), 1861-1877. https://doi.org/10.1002/cssc.201700082
  47. J. J. Meister, J. Macromol. Sci., 2002, 42(2), 235-289. https://doi.org/10.1081/MC-120004764
  48. P. Jedrzejczak, M. N. Collins, T. Jesionowski, and L. Klapiszewski, Int. J. Biol. Macromol., 2021, 187, 624-650. https://doi.org/10.1016/j.ijbiomac.2021.07.125
  49. A. Vishtal and A. Kraslawski, BioResources, 2011, 6, 3547-3568. https://doi.org/10.15376/biores.6.3.3547-3568
  50. A. Kumar, Anushree, J. Kumar, and T. Bhaskar, J. Energy Inst., 2020, 93(1), 235-271. https://doi.org/10.1016/j.joei.2019.03.005
  51. Y.-Y. Wang, X. Meng, Y. Pu, and A. J. Ragauskas, Polymers, 2020, 12(10), 2277.
  52. C. Wang, S. S. Kelley, and R. A. Venditti, ChemSusChem, 2016, 9(8), 770-783. https://doi.org/10.1002/cssc.201501531
  53. M. Yanez-S, B. Matsuhiro, C. Nunez, S. Pan, C. A. Hubbell, P. Sannigrahi, and A. J. Ragauskas, Polym. Degrad. Stab., 2014, 110, 184-194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026
  54. J. H. Lora and W. G. Glasser, J. Polym. Environ., 2002, 10, 39-48. https://doi.org/10.1023/A:1021070006895
  55. O. Ioannidou and A. Zabaniotou, Renew. Sust. Energ. Rev., 2007, 11(9), 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013
  56. M. A. Yahya, Z. Al-Qodah, and C. W. Z. Ngah, Renew. Sust. Energ. Rev., 2015, 46, 218-235. https://doi.org/10.1016/j.rser.2015.02.051
  57. A. M. Abioye and F. N. Ani, Renew. Sust. Energ. Rev., 2015, 52, 1282-1293. https://doi.org/10.1016/j.rser.2015.07.129
  58. W. Zhang, J. Yin, C. Wang, L. Zhao, W. Jian, K. Lu, H. Lin, X. Qiu, and H. N. Alshareef, Small Methods, 2021, 5(11), 2100896.
  59. A. Aworn, P. Thiravetyan, and W. Nakbanpote, J. Anal. Appl. Pyrolysis, 2008, 82(2), 279-285. https://doi.org/10.1016/j.jaap.2008.04.007
  60. D. Saha, Y. Li, Z. Bi, J. Chen, J. K. Keum, D. K. Hensley, H. A. Grappe, H. M. Meyer III, S. Dai, and M. P. Paranthaman, Langmuir, 2014, 30, 900-910. https://doi.org/10.1021/la404112m
  61. R. A. P. Jayawickramage, K. J. Balkus, and J. P. Ferraris, Nanotechnology, 2019, 30, 355402.
  62. J. Hu, D. Shen, S. Wu, and R. Xiao, J. Anal. Appl. Pyrolysis, 2017, 127, 444-450. https://doi.org/10.1016/j.jaap.2017.07.005
  63. L.-Y. Hsu and H. Teng, Fuel Process. Technol., 2000, 64(1-3), 155-166.
  64. Z. Hu, M. Srinivasan, and Y. Ni, Carbon, 2001, 39(6), 877-886. https://doi.org/10.1016/S0008-6223(00)00198-6
  65. H. Teng and T.-S. Yeh, Ind. Eng. Chem. Res., 1998, 37, 58-65. https://doi.org/10.1021/ie970534h
  66. W. Zhang, M. Zhao, R. Liu, X. Wang, and H. Lin, Colloids Surf. Physicochem. Eng. Aspects, 2015, 484, 518-527. https://doi.org/10.1016/j.colsurfa.2015.08.030
  67. G. H. Lim, J.-W. Lee, J.-H. Choi, Y. C. Kang, and K. C. Roh, Mater. Chem. Phys., 2022, 284, 126073.
  68. Y. Wu, J.-P. Cao, Z.-Q. Hao, X.-Y. Zhao, Q.-Q. Zhuang, J.-S. Zhu, X.-Y. Wang, and X.-Y. Wei, Int. J. Electrochem. Sci., 2017, 12, 7227-7239. https://doi.org/10.20964/2017.08.01
  69. T. Zhao, A. Elzatahry, X. Li, and D. Zhao, Nat. Rev. Mater., 2019, 4, 775-791. https://doi.org/10.1038/s41578-019-0144-x
  70. Y. Song, J. Liu, K. Sun, and W. Xu, RSC Adv., 2017, 7, 48324-48332. https://doi.org/10.1039/C7RA09464G
  71. C. Ma, L. Wu, M. Dirican, H. Cheng, J. Li, Y. Song, J. Shi, and X. Zhang, J. Colloid Interface Sci., 2021, 586, 412-422. https://doi.org/10.1016/j.jcis.2020.10.105
  72. Y. Xi, X. Liu, W. Xiong, H. Wang, X. Ji, F. Kong, G. Yang, and J. Xu, Ind. Crops Prod., 2021, 174, 114184.
  73. F. Fu, D. Yang, W. Zhang, H. Wang, and X. Qiu, Chem. Eng. J., 2020, 392, 123721.
  74. D.-P. Yang, Z. Li, M. Liu, X. Zhang, Y. Chen, H. Xue, E. Ye, and R. Luque, ACS Sustainable Chem. Eng., 2019, 7(5), 4564-4585. https://doi.org/10.1021/acssuschemeng.8b06030
  75. V. Pavlenko, S. Zoltowska, A. Haruna, M. Zahid, Z. Mansurov, Z. Supiyeva, A. Galal, K. Ozoemena, Q. Abbas, and T. Jesionowski, Mater. Sci. Eng. R Rep., 2022, 149, 100682.
  76. H. Li, Y. Zhao, S. Liu, P. Li, D. Yuan, and C. He, Microporous Mesoporous Mater., 2020, 297, 109960.
  77. F. Souto, V. Calado, and N. Pereira, Mater. Res. Express, 2018, 5, 072001.
  78. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Carbon, 2002, 40(15), 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  79. M. Zhu, H. Liu, Q. Cao, H. Zheng, D. Xu, H. Guo, S. Wang, Y. Li, and J. Zhou, ACS Sustainable Chem. Eng., 2020, 8(34), 12831-12841. https://doi.org/10.1021/acssuschemeng.0c03062
  80. Z. Dai, P.-G. Ren, W. He, X. Hou, F. Ren, Q. Zhang, and Y.-L. Jin, Renew. Energy, 2020, 162, 613-623. https://doi.org/10.1016/j.renene.2020.07.152
  81. S. Paunonen, BioResources, 2013, 8(2), 3098-3121. https://doi.org/10.15376/biores.8.2.3098-3121
  82. Q. Cao, M. Zhu, J. Chen, Y. Song, Y. Li, and J. Zhou, ACS Appl. Mater. Interfaces, 2019, 12(1), 1210-1221.
  83. J. Wei, S. Geng, O. Pitkanen, T. Jarvinen, K. Kordas, and K. Oksman, ACS Appl. Energy Mater., 2020, 3(4), 3530-3540.  https://doi.org/10.1021/acsaem.0c00065
  84. R. D. Ortiz-Olivares, D. R. Lobato-Peralta, D. Arias, J. A. Okolie, A. K. Cuentas-Gallegos, P. Sebastian, A. R. Mayer, and P. U. Okoye, J. Energy Storage, 2022, 55, 105447.
  85. W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu, J. Zhu, Z. Zhang, Y. Qin, D. Yang, and C. C. Xu, Carbon Res., 2022, 1, 14.
  86. M. Molina-Sabio, M. Gonzalez, F. Rodriguez-Reinoso, and A. Sepulveda-Escribano, Carbon, 1996, 34(4), 505-509. https://doi.org/10.1016/0008-6223(96)00006-1
  87. D.-W. Kim, H.-S. Kil, K. Nakabayashi, S.-H. Yoon, and J. Miyawaki, Carbon, 2017, 114, 98-105. https://doi.org/10.1016/j.carbon.2016.11.082
  88. J. Yin, W. Zhang, N. A. Alhebshi, N. Salah, and H. N. Alshareef, Small Methods, 2020, 4(3), 1900853.
  89. S. K. Park, S. H. Kwon, S. G. Lee, M. S. Choi, D. H. Suh, P. Nakhanivej, H. Lee, and H. S. Park, ACS Energy Lett., 2018, 3(3), 724-732.
  90. S. Nizamuddin, H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. Ali, Renew. Sust. Energ. Rev., 2017, 73, 1289-1299. https://doi.org/10.1016/j.rser.2016.12.122
  91. A. Jain, R. Balasubramanian, and M. P. Srinivasan, Chem. Eng. J., 2016, 283, 789-805. https://doi.org/10.1016/j.cej.2015.08.014
  92. K. Chen, Z.-J. He, Z.-H. Liu, A. J. Ragauskas, B.-Z. Li, and Y.-J. Yuan, ChemSusChem, 2022, 15, e202201284.
  93. S. K. Park, H. Lee, M. S. Choi, D. H. Suh, P. Nakhanivej, and H. S. Park, Energy Storage Mater., 2018, 12, 331-340. https://doi.org/10.1016/j.ensm.2017.10.008
  94. P. Schlee, O. Hosseinaei, D. Baker, A. Landmer, P. Tomani, M. J. Mostazo-Lopez, D. Cazorla-Amoros, S. Herou, and M.-M. Titirici, Carbon, 2019, 145, 470-480. https://doi.org/10.1016/j.carbon.2019.01.035
  95. J. L. Espinoza-Acosta, P. I. Torres-Chavez, J. L. Olmedo-Martinez, A. Vega-Rios, S. Flores-Gallardo, and E. A. Zaragoza-Contreras, J. Energy Chem., 2018, 27(5), 1422-1438. https://doi.org/10.1016/j.jechem.2018.02.015
  96. K. Namsheer and C. S. Rout, RSC Adv., 2021, 11, 5659-5697. https://doi.org/10.1039/D0RA07800J
  97. Y. Huang, J. Liang, and Y. Chen, Small, 2012, 8(12), 1805-1834. https://doi.org/10.1002/smll.201102635
  98. M. A. A. M. Abdah, N. H. N. Azman, S. Kulandaivalu, and Y. Sulaiman, Mater. Des., 2020, 186, 108199.
  99. F. Chen, W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei, and M. Zhong, Green Chem., 2013, 15, 3057-3063. https://doi.org/10.1039/c3gc41080c
  100. X. Ma, P. Kolla, Y. Zhao, A. L. Smirnova, and H. Fong, J. Power Sources, 2016, 325, 541-548. https://doi.org/10.1016/j.jpowsour.2016.06.073
  101. B. Yu, A. Gele, and L. Wang, Int. J. Biol. Macromol., 2018, 118, 478-484. https://doi.org/10.1016/j.ijbiomac.2018.06.088
  102. M. Zhou, A. Bahi, Y. Zhao, L. Lin, F. Ko, P. Servati, S. Soltanian, P. Wang, Y. Yu, Q. Wang, and Z. Cai, Chem. Eng. J., 2021, 409, 128214.
  103. C. Han, H. Li, R. Shi, T. Zhang, J. Tong, J. Li, and B. Li, J. Mater. Chem. A, 2019, 7, 23378-23415. https://doi.org/10.1039/C9TA05252F
  104. S. Admassie, A. Elfwing, E. W. Jager, Q. Bao, and O. Inganas, J. Mater. Chem. A, 2014, 2, 1974-1979. https://doi.org/10.1039/C3TA13876C
  105. S. Admassie, F. N. Ajjan, A. Elfwing, and O. Inganas, Mater. Horiz., 2016, 3, 174-185. https://doi.org/10.1039/C5MH00261C
  106. S. Leguizamon, K. P. Diaz-Orellana, J. Velez, M. C. Thies, and M. E. Roberts, J. Mater. Chem. A, 2015, 3, 11330-11339. https://doi.org/10.1039/C5TA00481K
  107. F. N. Ajjan, N. Casado, T. Rebis, A. Elfwing, N. Solin, D. Mecerreyes, and O. Inganas, J. Mater. Chem. A, 2016, 4, 1838-1847. https://doi.org/10.1039/C5TA10096H
  108. Z. Yhobu, A. Siddiqa, M. Padaki, S. Budagumpi, and N. D. H., Energy Fuels, 2022, 36(24), 14625-14656. https://doi.org/10.1021/acs.energyfuels.2c03101
  109. A. M. Navarro-Suarez, N. Casado, J. Carretero-Gonzalez, D. Mecerreyes, and T. Rojo, J. Mater. Chem. A, 2017, 5, 7137-7143. https://doi.org/10.1039/C7TA00527J
  110. Z. Cai, C. Jiang, X. Xiao, Y. Zhang, and L. Liang, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 359, 012046.
  111. W. Ye, X. Li, J. Luo, X. Wang, and R. Sun, Ind. Crops Prod., 2017, 109, 410-419.
  112. L. Cui, H. Xu, Y. An, M. Xu, Z. Lei, and X. Jin, Adv. Powder Technol., 2022, 33(6), 103571.
  113. W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, and M. Zhao, ChemSusChem, 2015, 8(12), 2114-2122. https://doi.org/10.1002/cssc.201403486
  114. W. Liu, Y. Yao, O. Fu, S. Jiang, Y. Fang, Y. Wei, and X. Lu, RSC Adv., 2017, 7, 48537-48543. https://doi.org/10.1039/C7RA08531A
  115. C. Jiang, Z. Wang, J. Li, Z. Sun, Y. Zhang, L. Li, K.-S. Moon, and C. Wong, Electrochim. Acta, 2020, 353, 136482.
  116. F. Fu, D. Yang, H. Wang, Y. Qian, F. Yuan, J. Zhong, and X. Qiu, ACS Sustaiable Chem. Eng., 2019, 7(19), 16419-16427. https://doi.org/10.1021/acssuschemeng.9b03521
  117. L. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, G. Liang, L. Liu, D. Fang, and W. Xu, RSC Adv., 2014, 4, 6261-6266. https://doi.org/10.1039/c3ra47224h
  118. H. Xu, H. Jiang, X. Li, and G. Wang, RSC Adv., 2015, 5, 76116-76121.  https://doi.org/10.1039/C5RA12292A