DOI QR코드

DOI QR Code

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Xiang Fan (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Wenhao Lu (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Jian Yao (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Zhike Sui (School of Mechanical and Electronic Engineering, Shandong Jianzhu University)
  • 투고 : 2023.06.19
  • 심사 : 2023.09.11
  • 발행 : 2024.02.29

초록

Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

키워드

과제정보

The research was supported by the projects of Formation mechanism and emission reduction technology of carbonyl emissions from DMDF combustion (Natural Science Foundation of Shandong Province, Grant No. ZR2020QE203).

참고문헌

  1. Y. Liu, H. Guo, and X. Ouyang, Strategic Study of CAE, 2021, 23(4), 162-171.
  2. Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, A.K. Al-Jiboory, J. Energy Storage, 2023, 72, Part B, 108404.
  3. S. Chandrasekaran, J. S. Chung, E. J. Kim, and S. H. Hur, J. Electrochem. Sci. Technol., 2016, 7(1), 1-12. https://doi.org/10.33961/JECST.2016.7.1.7
  4. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Hang, and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273. https://doi.org/10.33961/JECST.2017.8.4.265
  5. W. Hwang and Y.-E. Sung, J. Electrochem. Sci. Technol., 2023, 14(2), 120-130. https://doi.org/10.33961/jecst.2022.00808
  6. Q. Liu, F. Lan, J. Chen, C. Zeng, and J. Wang, J. Power Sources, 2022, 517, 230723.
  7. K. Lim, C. Kim, R. Park, A. Alam, and H. Ju, Chem. Eng. J., 2023, 475, 146147.
  8. Z. Xia, H. Chen, T. Zhang, and P. Pei, Int. J. Hydrogen Energy, 2022, 47(26), 13076-13086. https://doi.org/10.1016/j.ijhydene.2022.02.047
  9. Q. Zhao, H. Guo, F. Ye, and C. Ma, CIESC J., 2020, 71(5), 1943-1963.
  10. Y. J. Liu and B. Chen, Automotive Engineering, 2021, 43(06), 799-807.
  11. H. Chen, H. Guo, F. Ye, C. F. Ma, Q. Liao, and X. Zhu, Int. J. Energy Res., 2019, 43(7), 2910-2929. https://doi.org/10.1002/er.4461
  12. J. Yao, F. Yan, and X. Pei, Chem. Pap., 2022, 77, 935-946. https://doi.org/10.1007/s11696-022-02532-2
  13. H. Heidary and M. J. Kermani, Int. Commun. Heat Mass Transf., 2012, 39(1), 112-120. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.001
  14. H. Heidary, M. J. Kermani, and B. Dabir, Energy Convers. Manag., 2016, 124, 51-60. https://doi.org/10.1016/j.enconman.2016.06.043
  15. H. C. Liu, W. M. Yan, C. Y. Song, F. Chen, and H. S. Chu, J. Power Sources, 2006, 158(1), 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017
  16. S. Abdulla and V. S. Patnaikuni, Int. J. Hydrogen Energy, 2020, 45(48), 25970-25984. https://doi.org/10.1016/j.ijhydene.2020.01.199
  17. Y. Huang, S. Jiangnan, D. Xinyue, C. Su, Z. Xiang, M. Zongpeng, C. Lunjun, and W. Yanli, Energy, 2023, 266, 126448.
  18. Z. Zhang, X. Fan, W. Lu, and J. Yao, Ionics, 2023, 29, 4125-4145.
  19. E. Afshari and N. B. Houreh, Int. J. Mod. Phys. B, 2014, 28(16), 1450097.
  20. S.-W. Perng and H.-W. Wu, Appl. Energy, 2015, 143, 81-95. https://doi.org/10.1016/j.apenergy.2014.12.059
  21. S.-W. Perng and H.-W. Wu, J. Power Sources, 2008, 175(2), 806-816. https://doi.org/10.1016/j.jpowsour.2007.09.095
  22. B. Amani and A. Zanj, Int. Commun. Heat Mass Transf., 2023, 140, 106558.
  23. Y. Cai, D. Wu, J. Sun, and B. Chen, Energy, 2021, 222, 119951.
  24. A. A. Ebrahimzadeh, I. Khazaee, and A. Fasihfar, Int. J. Heat Mass Transfer, 2019, 141, 891-904. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.034
  25. H. Guo, H. Chen, and C. F. Ma, Int. J. Energy Res., 2019, 43(7), 2737-2755. https://doi.org/10.1002/er.4328
  26. Y. Yin, S. Wu, Y. Qin, O. N. Otoo, and J. Zhang, Appl. Energy, 2020, 271, 115257.
  27. Y. Wang, C. Guan, P. Zhang, T. Zhu, S. Wnag, Y. Zhu, and X. Wang, J. Clean. Prod., 2022, 375, 134187.
  28. F. Tiss, R. Chouikh, and A. Guizani, Energy Convers. Manag., 2014, 80, 23-38. https://doi.org/10.1016/j.enconman.2013.12.063
  29. H. Heidary, M. J. Kermani, and B. Dabir, Energy Convers. Manag., 2016, 124, 51-60. https://doi.org/10.1016/j.enconman.2016.06.043
  30. H. Chen, H. Guo, F. Ye, and C. F. Ma, Int. J. Hydrogen Energy, 2021, 46(57), 29443-29458. https://doi.org/10.1016/j.ijhydene.2020.12.178
  31. M. Karthikeyan, P. Karthikeyan, M. Muthukumar, V. M. Kannan, K. Thanarajan, T. Maiyalagan, C.-W. Hong, V. R. Jothi, and S.-C. Yi, Int. J. Hydrogen Energy, 2020, 45(13), 7863-7872. https://doi.org/10.1016/j.ijhydene.2019.08.151
  32. A. Nishimura, K. Toyoda, Y. Kojima, S. Ito, and E. Hu, Energies, 2021, 14(24), 8256.
  33. J. Yao, F. Yan, and X. Pei, J. Electrochem. Sci. Technol., 2023, 14(1), 38-50. https://doi.org/10.33961/jecst.2022.00479
  34. H. Heidary, M. J. Kermani, A. K. Prasad, S. G. Advani, and B. Dabir, Int. J. Hydrogen Energy, 2017, 42(4), 2265-2277. https://doi.org/10.1016/j.ijhydene.2016.10.076
  35. L. Xing, M. Mamlouk, and K. Scott, Energy, 2013, 61, 196-210. https://doi.org/10.1016/j.energy.2013.08.026
  36. L. Xing, S. Du, R. Chen M. Mamlouk, and K. Scott, Energy, 2016, 96, 80-95. https://doi.org/10.1016/j.energy.2015.12.048
  37. J. Song and Z. Huang, Journal of Guizhou University (Natural Sciences), 2021, 38(6), 61-66.
  38. Q. Tan, H. Lei, and Z. Liu, Int. J. Hydrogen Energy, 2022, 47(23), 11975-11990. https://doi.org/10.1016/j.ijhydene.2022.01.243
  39. C. Chen, C. Wang, and Z. Zhang, Energy Conversion and Management, 2023, 276, 116532.
  40. Q. Xie and M. Zheng, Processes, 2021, 9(9), 1526.
  41. L. Xing, P. K. Das, X. Song, M. Mamlouk, and K. Scott, Appl. Energy, 2015, 138, 242-257. https://doi.org/10.1016/j.apenergy.2014.10.011
  42. F. Mojica, M. A. Rahman, M. Sarker, D. S. Hussey, D. L. Jacobson, J. M. LaManna, and P.-Y. A. Chuang, Energy Convers. Manag., 2021, 237, 114095.
  43. L. Fan, Z. Niu, and G. Zhang, Energy Convers. Manag., 2018, 171, 1813-1821. https://doi.org/10.1016/j.enconman.2018.06.111
  44. Y. Cai, D. Wu, J. Sun, and B. Chen, Energy, 2021, 222, 119951.
  45. A. Hamrang, M. Abdollahzadeh, M. J. Kermani, S. M. Rahgoshay, Int. J. Heat Mass Transf., 2022, 186, 122475.
  46. Y. Yin, X. Wang, X. Shangguan, J. Zhang, and Y. Qin, Int. J. Hydrogen Energy, 2018, 43(16), 8048-8062. https://doi.org/10.1016/j.ijhydene.2018.03.037
  47. S. G. Kandlikar, M. L. Garofalo, and Z. Lu, Fuel Cells, 2011, 11(6), 814-823. https://doi.org/10.1002/fuce.201000172