DOI QR코드

DOI QR Code

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung Jong Yoo (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jin Young Kim (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hyun S. Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • So Young Lee (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Bora Seo (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kwan-Young Lee (Department of Chemical and Biological Engineering, Korea University) ;
  • Jong Hyun Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hee-Young Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • 투고 : 2023.09.25
  • 심사 : 2023.10.18
  • 발행 : 2024.02.29

초록

Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020M1A2A2080806 and NRF-2022M3J1A1085384), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 20203010030010), and the Korea Institute of Science and Technology (KIST) Institutional Program.

참고문헌

  1. J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, and J. Zhang, EnergyChem, 2020, 2(1), 100023.
  2. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Jang, and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273. https://doi.org/10.33961/JECST.2017.8.4.265
  3. M. K. Cho, A. Lim, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3),183-196. https://doi.org/10.33961/JECST.2017.8.3.183
  4. H. Kim, D. I. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(1), 32-53. https://doi.org/10.33961/jecst.2021.00920
  5. W. Zhao, W. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
  6. G. Zheng, Z. Li, J. Lu, J. Zhang, L. Chen, and M. Yang, J. Electrochem. Sci. Technol., 2020, 11(4), 399-405.
  7. C. Zhang, X. Shen, Y. Pan, and Z. Peng, Front. Energy, 2017, 11, 268-285. https://doi.org/10.1007/s11708-017-0466-6
  8. D. Y. Chung, J. M. Yoo, and Y.-E. Sung, Adv. Mater., 2018, 30(42), 1704123.
  9. D. Banham and S. Ye, ACS Energy Lett., 2017, 2(3), 629-638.
  10. A. Kongkanand and M. F. Mathias, J. Phys. Chem. Lett., 2016, 7(7), 1127-1137. https://doi.org/10.1021/acs.jpclett.6b00216
  11. B. Popov, Development of ultra-low doped-Pt cathode catalysts for PEM fuel cells , 2014 DOE Hydrogen and Fuel Cells Program Review, Washington, DC, 2014. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review14/fc088_popov_2014_o.pdf
  12. M. Kiani, X. Q. Tian, and W. Zhang, Coord. Chem. Rev., 2021, 441, 213954.
  13. A. A. Gewirth, J. A. Varnell, and A. M. DiAscro, Chem. Rev., 2018, 118(5), 2313-2339. https://doi.org/10.1021/acs.chemrev.7b00335
  14. Y. J. Sa, J. H. Kim, and S. H. Joo, J. Electrochem. Sci. Technol., 2017, 8(3), 169-182. https://doi.org/10.33961/JECST.2017.8.3.169
  15. M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, and Y. Xia, J. Am. Chem. Soc., 2021, 143(22), 8509-8518. https://doi.org/10.1021/jacs.1c04160
  16. L. Wang, W. Gao, Z. Liu, Z. Zeng, Y. Liu, M. Giroux, M. Chi, G. Wang, J. Greeley, X. Pan, and C. Wang, ACS Catal., 2018, 8(1), 35-42.
  17. S. Mi, N. Cheng, H. Jiang, C. Li, and H. Jiang, RSC Adv., 2018, 8(28), 15344-15351. https://doi.org/10.1039/C8RA02219D
  18. L. Wang, C. Xu, M.-Y. Li, L.-J. Li, and Z.-H. Loh, Nano Lett., 2018, 18(8), 5172-5178.
  19. M. Lokanathan, I. M. Patil, P. Mukherjee, A. Swami, and B. Kakade, ACS Sustainable Chem. Eng., 2020, 8(2), 986-993. https://doi.org/10.1021/acssuschemeng.9b05650
  20. Y. Nie, J. Deng, S. Chen, and Z. Wei, Int. J. Hydrogen Energy, 2019, 44(12), 5921-5928. https://doi.org/10.1016/j.ijhydene.2019.01.125
  21. T. Yoshida and K. Kojima, Electrochem. Soc. Interface, 2015, 24(2), 45.
  22. Heraeus Precious Metals, PGM MARKET ANALYSIS : Platinum demand from fuel cell cars - dream or realtiy?, 2018. https://www.heraeus.com/media/media/hpm/doc_hpm/precious_metal_update/en_6/20181031_PGM_Market_Analysis.pdf
  23. H. Hao, Y. Geng, J. E. Tate, F. Liu, X. Sun, Z. Mu, D. Xun, Z. Liu, and F. Zhao, One Earth, 2019, 1(1), 117-125. https://doi.org/10.1016/j.oneear.2019.08.012
  24. X. Zhao and K. Sasaki, Acc. Chem. Res., 2022, 55(9), 1226-1236. https://doi.org/10.1021/acs.accounts.2c00057
  25. J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, and S. Sun, Joule, 2019, 3(1), 124-135. https://doi.org/10.1016/j.joule.2018.09.016
  26. M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, J. Phys. Chem. C, 2012, 116(36), 19073-19083. https://doi.org/10.1021/jp306426a
  27. Z. Liu, C. Yu, I. A. Rusakova, D. Huang, and P. Strasser, Top. Catal., 2008, 49, 241-250. https://doi.org/10.1007/s11244-008-9083-2
  28. S. Lee, J.-H. Jang, I. Jang, D. Choi, K.-S. Lee, D. Ahn, Y. S. Kang, H.-Y. Park, and S. J. Yoo, J. Catal., 2019, 379, 112-120. https://doi.org/10.1016/j.jcat.2019.09.020
  29. W. Zhao, Y. Ye, W. Jiang, J. Li, H. Tang, J. Hu, L. Du, Z. Cui, and S. Liao, J. Mater. Chem. A, 2020, 8(31), 15822-15828. https://doi.org/10.1039/D0TA01437K
  30. E. B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, and J.-S. Yu, ACS Appl. Mater. Interfaces, 2022, 14(22), 25246-25256. https://doi.org/10.1021/acsami.2c00398
  31. M. Grandi, K. Mayer, M. Gatalo, G. Kapun, F. RuizZepeda, B. Marius, M. Gaberscek, and V. Hacker, Energies, 2021, 14(21), 7299.
  32. A. Kobayashi, T. Fujii, K. Takeda, K. Tamoto, K. Kakinuma, and M. Uchida, ACS Appl. Energy Mater., 2022, 5(1), 316-329. https://doi.org/10.1021/acsaem.1c02836
  33. J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, D. Ubeda, and F. J. Pinar, Fuel cells, 2010, 10(2), 312-319.
  34. Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang, Chem. Soc. Rev., 2010, 39(6), 2184-2202. https://doi.org/10.1039/b912552c
  35. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F. J. DiSalvo, and H. D. Abruna, Nature Mater., 2013, 12, 81-87. https://doi.org/10.1038/nmat3458
  36. M. Gummalla, S. C. Ball, D. A. Condit, S. Rasouli, K. Yu, P. J. Ferreira, D. J. Myers, and Z. Yang, Catalysts, 2015, 5(2), 926-948. https://doi.org/10.3390/catal5020926
  37. S.-I. Choi, S.-U. Lee, W. Y. Kim, R. Choi, K. Hong, K. M. Nam, S. W. Han, and J. T. Park, ACS Appl. Mater. Interfaces, 2012, 4(11), 6228-6234. https://doi.org/10.1021/am301824w
  38. L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, and X. Huang, Nat. Commun., 2016, 7, 11850.
  39. D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, and N. M. Markovic, Energy Environ. Sci., 2014, 7(12), 4061-4069.
  40. M. Shao, A. Peles, and K. Shoemaker, Nano Lett., 2011, 11(9), 3714-3719. https://doi.org/10.1021/nl2017459
  41. F. J. Perez-Alonso, D. N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I. E. L. Stephens, J. H. Nielsen, and I. Chorkendorff, Angew. Chem. Int. Ed., 2012, 51(19), 4641-4643. https://doi.org/10.1002/anie.201200586
  42. Y. Xiong, L. Xiao, Y. Yang, F. J. DiSalvo, and H. D. Abruna, Chem. Mater., 2018, 30(5), 1532-1539. https://doi.org/10.1021/acs.chemmater.7b04201
  43. F. Wang, Q. Zhang, Z. Rui, J. Li, and J. Liu, ACS Appl. Mater. Interfaces, 2020, 12(27), 30381-30389. https://doi.org/10.1021/acsami.0c06951
  44. C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser, Nature Mater., 2013, 12, 765-771. https://doi.org/10.1038/nmat3668
  45. C. Zhang, S. Y. Hwang, A. Trout, and Z. Peng, J. Am. Chem. Soc., 2014, 136(22), 7805-7808. https://doi.org/10.1021/ja501293x
  46. B. Li, J. Wang, X. Gao, C. Qin, D. Yang, H. Lv, Q. Xiao, and C. Zhang, Nano Res., 2019, 12, 281-287. https://doi.org/10.1007/s12274-018-2211-9
  47. S.-I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, and Y. Xia, Nano Lett., 2013, 13(7), 3420-3425. https://doi.org/10.1021/nl401881z
  48. S. Kuhl, M. Gocyla, H. Heyen, S. Selve, M. Heggen, R. Dunin-Borkowski, and P. Strasser, J. Mater. Chem. A, 2019, 7(3), 1149-1159. https://doi.org/10.1039/C8TA11298C
  49. C. Cui, L. Gan, H.-H. Li, S.-H. Yu, M. Heggen, and P. Strasser, Nano Lett., 2012, 12(11), 5885-5889. https://doi.org/10.1021/nl3032795
  50. Q. Chang, Y. Xu, Z. Duan, F. Xiao, F. Fu, Y. Hong, J. Kim, S.-I. Choi, D. Su, and M. Shao, Nano Lett., 2017, 17(6), 3926-3931. https://doi.org/10.1021/acs.nanolett.7b01510
  51. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, and Y. Huang, Science, 2015, 348(6240), 1230-1234. https://doi.org/10.1126/science.aaa8765
  52. J. Choi, J.-H. Jang, C.-W. Roh, S. Yang, J. Kim, J. Lim, S. J. Yoo, and H. Lee, Appl. Catal. B: Environ., 2018, 225, 530-537. https://doi.org/10.1016/j.apcatb.2017.12.016
  53. J. Zhang, H. Yang, J. Fang, and S. Zou, Nano Lett., 2010, 10(2), 638-644. https://doi.org/10.1021/nl903717z
  54. J. Wu, J. Zhang, Z. Peng, S. Yang, F.T. Wagner, and H. Yang, J. Am. Chem. Soc., 2010, 132(14), 4984-4985. https://doi.org/10.1021/ja100571h
  55. J. Lim, H. Shin, M. Kim, H. Lee, K.-S. Lee, Y. Kwon, D. Song, S. Oh, H. Kim, and E. Cho, Nano Lett., 2018, 18(4), 2450-2458. https://doi.org/10.1021/acs.nanolett.8b00028
  56. Y. Li, F. Quan, L. Chen, W. Zhang, H. Yu, and C. Chen, RSC Adv., 2014, 4(4), 1895-1899. https://doi.org/10.1039/C3RA46299D
  57. J. Lim, K. Shin, J. Bak, J. Roh, S. Lee, G. Henkelman, and E. Cho, Chem. Mater., 2021, 33(22), 8895-8903. https://doi.org/10.1021/acs.chemmater.1c03196
  58. V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R. E. Dunin-Borkowski, M.-G. Willinger, and P. Strasser, Nano Lett., 2016, 16(3), 1719-1725. https://doi.org/10.1021/acs.nanolett.5b04636
  59. Y. Lu, L. Thia, A. Fisher, C.-Y. Jung, S. C. Yi, and X. Wang, Sci. China Mater., 2017, 60, 1109-1120. https://doi.org/10.1007/s40843-017-9029-5
  60. J. Choi, Y. Lee, J. Kim, and H. Lee, J. Power Sources, 2016, 307, 883-890. https://doi.org/10.1016/j.jpowsour.2016.01.063
  61. J. Park, J. Liu, H.-C. Peng, L. Figueroa-Cosme, S. Miao, S.-I. Choi, S. Bao, X. Yang, and Y. Xia, ChemSusChem, 2016, 9(16), 2209-2215. https://doi.org/10.1002/cssc.201600566
  62. X. Zhao, S. Takao, K. Higashi, T. Kaneko, G. Samjeske, O. Sekizawa, T. Sakata, Y. Yoshida, T. Uruga, Y. Iwasawa, ACS Catal., 2017, 7(7), 4642-4654. https://doi.org/10.1021/acscatal.7b00964
  63. F. Kong, Z. Ren, M. Norouzi Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. young, L. yang, M. Makiewicz, Y. Tong, G. Yin, C. Du, J. Luo, and X. Sun, ACS Catal., 2020, 10(7), 4205-4214. https://doi.org/10.1021/acscatal.9b05133
  64. E. Zhu, Y. Li, C.-Y. Chiu, X. Huang, M. Li, Z. Zhao, Y. Liu, X. Duan, and Y. Huang, Nano Res., 2016, 9, 149-157. https://doi.org/10.1007/s12274-015-0927-3
  65. X. Luo, Y. Guo, H. Zhou, H. Ren, S. Shen, G. Wei, and J. Zhang, Front. Energy, 2020, 14, 767-777. https://doi.org/10.1007/s11708-020-0667-2
  66. M. Gocyla, S. Kuehl, M. Shviro, H. Heyen, S. Selve, R. E. Dunin-Borkowski, M. Heggen, and P. Strasser, ACS Nano, 2018, 12(6), 5306-5311. https://doi.org/10.1021/acsnano.7b09202
  67. V. Beermann, M. Gocyla, S. Ku?hl, E. Padgett, H. Schmies, M. Goerlin, N. Erini, M. Shviro, M. Heggen, R. E. Dunin-Borkowski, D. A. Muller, and P. Strasser, J. Am. Chem. Soc., 2017, 139(46), 16536-16547. https://doi.org/10.1021/jacs.7b06846
  68. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L More, N. M. Markovic, and V. R. Stamenkovic, J. Am. Chem. Soc., 2011, 133(36), 14396-14403. https://doi.org/10.1021/ja2047655
  69. C. Zhang, S. Y. Hwang, and Z. Peng, J. Mater. Chem. A, 2014, 2(46), 19778-19787. https://doi.org/10.1039/C4TA04728A
  70. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, and V. R. Stamenkovic, Science, 2014, 343(6177), 1339-1343. https://doi.org/10.1126/science.1249061
  71. D. W. Myers, X. Lee, S. Ferrandon, M. Kariuki, and N. T. Krause, High-Throughput/Combinatorial Optimization of Low-Pt PEMFC Cathode Performance, Annual Merit Review, Arlington, Virginia, 2015. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review15/fc114_myers_2015_o.pdf
  72. Q. Jia, Z. Zhao, L. Cao, J. Li, S. Ghoshal, V. Davies, E. Stavitski, K. Attenkofer, Z. Liu, M. Li, X. Duan, S. Mukerjee, T. Mueller, and Y. Huang, Nano Lett., 2018, 18(2), 798-804. https://doi.org/10.1021/acs.nanolett.7b04007
  73. F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. DuninBorkowski, and P. Strasser, Nano Lett., 2019, 19(10), 6876-6885. https://doi.org/10.1021/acs.nanolett.9b02116
  74. F. Wang, X. Wang, Z. Guo, J. Yu, and H. Zhu, Energy Fuels, 2021, 35(4), 3368-3375. https://doi.org/10.1021/acs.energyfuels.0c03708
  75. S. Kuhl, H. Heyen, and P. Strasser, ECS Trans., 2016, 75, 723.
  76. L. Cao and T. Mueller, Nano Lett., 2016, 16(12), 7748-7754. https://doi.org/10.1021/acs.nanolett.6b03867
  77. A. S. Haile, W. Yohannes, and Y. S. Mekonnen, RSC Adv., 2020, 10(46), 27346-27356. https://doi.org/10.1039/D0RA02972F
  78. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang, and D. Su, Appl. Catal. B: Environ., 2012, 111-112, 264-270.
  79. J. Seo, D. Cha, K. Takanabe, J. Kubota, and K. Domen, Phys. Chem. Chem. Phys., 2014, 16(3), 895-898.
  80. M. Nesselberger, S. Ashton, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, and M. Arenz, J. Am. Chem. Soc., 2011, 133(43), 17428-17433. https://doi.org/10.1021/ja207016u