Acknowledgement
이 연구는 금오공과대학교 학술연구비로 지원되었음(202103770001).
References
- Buannic, P., Cartraud, P. (2001) Higher-order Effective Modeling of Periodic Heterogeneous Beams. II. Derivation of the Proper Boundary Conditions for the Interior Asymptotic Solution, Int. J. Solids & Struct., 38, pp.7163~7180. https://doi.org/10.1016/S0020-7683(00)00423-6
- Buchwald, V. (1964) Eigenfunctions of Plane Elastostatics I. The Strip, Proc. Royal Soc. London. Ser. A, Math., Phys. Sci., 277, pp.385~400.
- Dauge, M., Gruais, I. (1998) Edge Layers in Thin Elastic Plates, Comput. Methodsn Appl. Mech. & Eng., 157, pp.335~347. https://doi.org/10.1016/S0045-7825(97)00244-2
- Gregory, R.D., Gladwell, I. (1982) The Cantilever Beam under Tension, Bending or Flexure at Infinity, J. Elast., 12(3), pp. 317~343. https://doi.org/10.1007/BF00042208
- Gregory, R.D., Wan, F.Y. (1984) Decaying Sates of Plane Strain in a Semi-Infinite Strip and Boundary Conditions for Plate theory, J. Elast., 14, pp.27~64.
- Jeong, Y -M, Kim, J.-S. (2016) A Thermal Stress Analysis of Beams with Out-of-Plane Warping, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.229~235.
- Kim, J.-S. (2012) Application of Saint-Venant's Principle to Anisotropic Beams, Trans. Korea Soc. Mech. Eng. A, 36(4), pp.451~455.
- Kim, J.-S. (2022) Asymptotic Closed-form Solutions Including Boundary-Layers for Orthotropic Beams, Eur. J. Mech. A Solids, 94, p.104541.
- Kim, J.-S., Cho, M., Smith, E.C. (2008) An Asymptotic Analysis of Composite Beams with Kinematically Corrected End Effects, Int. J. Solids & Struct., 45, pp.1954~1977.
- Kim, J.-S., Wang, K.W. (2011) On the Asymptotic Boundary Conditions of an Anisotropic Beam Via Virtual Work Principle, Int. J. Solids & Struct., 48, pp.2422~2431.
- Timoshenko, S.P., Goodier, J.N. (1970) Theory of Elasticity, 3rd Ed, McGraw-Hill, New York.