DOI QR코드

DOI QR Code

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate

패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가

  • Jeewoo Suh (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Ju-Hyeon Park (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Tong-Seok Han (Department of Civil and Environmental Engineering, Yonsei University)
  • 서지우 (연세대학교 건설환경공학과) ;
  • 박주현 (연세대학교 건설환경공학과) ;
  • 한동석 (연세대학교 건설환경공학과)
  • Received : 2023.11.13
  • Accepted : 2023.11.21
  • Published : 2024.02.29

Abstract

The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

해양폐기물 중 하나인 패각의 발생량은 매년 증가하고 있으나, 대부분이 해안 근처에 야적되거나 방치되어 환경적·사회적으로 문제가 되고 있다. 천연 골재 부존량 감소에 따른 골재 대체재로서 패각이 사용된다면 재료 수송에 따른 물류비용을 효과적으로 감축시킬 수 있어 자원 재활용을 활성화할 수 있다. 본 연구에서는 3D 콘크리트 프린팅 기술을 활용한 해양 구조물의 건설 재료로서 패각 잔골재의 사용 가능성을 분석하였다. 패각을 활용한 3D 프린팅 콘크리트는 패각 잔골재와 시멘트 풀 계면 등의 공극 요인으로 일반 콘크리트 대비 낮은 강도를 가지기 때문에 역학적 성능 평가를 위한 미세구조 특성 분석이 요구된다. 유동성, 출력성 및 적층성을 고려하여 3D 프린팅 콘크리트의 배합을 선정하였으며, 패각 잔골재를 활용한 3D 프린팅 콘크리트 시편의 물성과 미세구조를 분석하였다. 시편의 물성을 평가하기 위해 3D 프린터로 압축강도와 부착강도 시편을 제작하였고 강도 시험을 진행하였다. 미세구조를 분석하기 위해 고해상도 이미지를 얻을 수 있는 SEM 촬영을 수행하였으며, 히스토그램 기반 상 분리 방법을 적용하여 공극을 분리하였다. 패각 잔골재 종류에 따른 공극률을 확인하고 확률함수를 활용하여 공극 분포 특성을 정량화하였으며, 패각 잔골재의 종류에 따른 시편의 역학적 물성과 미세구조 특성 간의 상관관계를 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20220402, 해양수산기술창업 Scale-up 사업).

References

  1. ASTM, C. (2015) Standard Practice for Capping Cylindrical Concrete Specimens, C617M-15, 33.
  2. BSI, B. (1983) Testing Concrete: Part 120-Method for Determination of Compressive Strength of Concrete Cores, British Standards Institution, London.
  3. Chen, M., Li, L., Zheng, Y., Zhao, P., Lu, L., Cheng, X. (2018) Rheological and Mechanical Properties of Admixtures Modified 3D Printing Sulphoaluminate Cementitious Materials, Constr. & Build. Mater., 189, pp.601~611. https://doi.org/10.1016/j.conbuildmat.2018.09.037
  4. EN, B. (2009) Testing Hardened Concrete, Tensile Splitting Strength of Test Specimens, British Standards Institution, 12390-6.
  5. Gao, Y., De Schutter, G., Ye, G. (2013) Micro-and Meso-Scale Pore Structure in Mortar in Relation to Aggregate Content, Cem. & Concr. Res., 52, pp.149~160. https://doi.org/10.1016/j.cemconres.2013.05.011
  6. Han, T.-S., Zhang, X., Kim, J.-S., Chung, S.-Y., Lim, J.H., Linder, C. (2018) Area of Lineal-Path Function for Describing the Pore Microstructures of Cement Paste and Their Relations to the Mechanical Properties Simulated from µ-CT Microstructures, Cem. & Concr. Compos., 89, pp.1~17. https://doi.org/10.1016/j.cemconcomp.2018.02.008
  7. Hirsch, T., Dorn, T., Ehm, C., Stephan, D. (2020) Comparison of Printable Inorganic Binders-Key Properties for 3D Printable Materials, Second RILEM International Conference on Concrete and Digital Fabrication, 28, pp.53~63.
  8. Kim, J.H., Chung, C.W., Lee, J.Y. (2014) Effects of Crushed Shells on the Physical Properties of Cement Mortar, J. Korea Iinst. Build. Constr., 14(1), pp.94~101. https://doi.org/10.5345/JKIBC.2014.14.1.094
  9. Kim, J.-S., Lim, J.H., Stephan, D., Park, K., Han, T.-S. (2022a) Mechanical behavior Comparison of Single and Multiple Phase Models for Cement Paste using Micro-CT Images and Nanoindentation, Constr. & Build. Mater., 342, p.127938.
  10. Kim, J.S., Suh, J., Pae, J., Moon, J., Han, T.S. (2022b) Gradient-based Phase Segmentation Method for Characterization of Hydrating Cement Paste Microstructures Obtained from X-ray Micro-CT, J. Build. Eng., 46, p.103721.
  11. Kjellsen, K.O., Monsoy, A., Isachsen, K., Detwiler, R.J. (2003) Preparation of Flat-Polished Specimens for SEM-Backscattered Electron Imaging and X-ray Microanalysis-Importance of Epoxy Impregnation, Cem. & Concr. Res., 33(4), pp.611~616. https://doi.org/10.1016/S0008-8846(02)01029-3
  12. Kuo, W.T., Wang, H.Y., Shu, C.Y., Su, D.S. (2013) Engineering Properties of Controlled Low-Strength Materials Containing Waste Oyster Shells, Constr. & Build. Mater., 46, pp.128~133. https://doi.org/10.1016/j.conbuildmat.2013.04.020
  13. Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Law, R., Gibb, A. G., Thorpe, T. (2012) Hardened Properties of High-performance Printing Concrete, Cem. & Concr. Res., 42(3), pp.558~566. https://doi.org/10.1016/j.cemconres.2011.12.003
  14. Lee, M.J. (1999) Study on the Factor of Water Retention Capacity of Cement Mortar by Hydroxyalkyl Methylcellulose Ether, J. Korea Concr. Inst., 34(2), pp.153~160.
  15. Liu, C., Chen, Y., Zhang, Z., Niu, G., Xiong, Y., Ma, L., Fu, Q., Chen, C., Banthia, N., Zhang, Y. (2022) Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing, Constr. & Build. Mater., 356, p.129292.
  16. Long, W.J., Lin, C., Tao, J.L., Ye, T.H., Fang, Y. (2021) Printability and Particle Packing of 3D-Printable Limestone Calcined Clay Cement Composites, Constr. & Build. Mater., 282, p.122647.
  17. Lyu, K., She, W., Miao, C., Chang, H., Gu, Y. (2019) Quantitative Characterization of Pore Morphology in Hardened Cement Paste Via SEM-BSE Image Analysis, Constr. & Build. Mater., 202, pp.589~602. https://doi.org/10.1016/j.conbuildmat.2019.01.055
  18. Ma, G., Li, Z., Wang, L. (2018) Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion based 3D Printing, Constr. & Build. Mater., 162, pp.613~627. https://doi.org/10.1016/j.conbuildmat.2017.12.051
  19. Mo, K.H., Alengaram, U.J., Jumaat, M.Z., Lee, S.C., Goh, W.I., Yuen, C.W. (2018) Recycling of Seashell Waste in Concrete: A Review, Constr. & Build. Mater., 162, pp.751~764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
  20. Moeini, M.A., Hosseinpoor, M., Yahia, A. (2020) Effectiveness of the Rheometric Methods to Evaluate the Build-up of Cementitious Mortars used for 3D Printing, Constr. & Build. Mater., 257, p.119551.
  21. Safi, B., Saidi, M., Daoui, A., Bellal, A., Mechekak, A., Toumi, K. (2015) The use of Seashells as a Fine Aggregate (by sand substitution) in Self-Compacting Mortar (SCM), Constr. & Build. Mater., 78, pp.430~438. https://doi.org/10.1016/j.conbuildmat.2015.01.009
  22. Torquato, S., Haslach Jr, H.W. (2002) Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Appl. Mech. Rev., 55(4), pp.B62~B63. https://doi.org/10.1115/1.1483342
  23. Wolfs, R.J. M., Bos, F.P., Salet, T.A.M. (2019) Hardened Properties of 3D Printed Concrete: The Influence of Process Parameters on Interlayer Adhesion, Cem. & Concr. Res., 119, pp.132~140. https://doi.org/10.1016/j.cemconres.2019.02.017
  24. Wu, S., Sun, K., Zhao, H ., Zhang, F. (2018) Quantitative Invalidation Characterization of Portland Cement based on BSE and EDS Analysis, Constr. & Build. Mater., 158, pp. 700~706. https://doi.org/10.1016/j.conbuildmat.2017.09.187
  25. Yang, E.I., Yi, S.T., Leem, Y.M. (2005) Effect of Oyster Shell Substituted for Fine Aggregate on Concrete Characteristics: Part I. Fundamental Properties, Cem. & Concr. Res., 35(11), pp.2175~2182. https://doi.org/10.1016/j.cemconres.2005.03.016
  26. Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V., Sun, Z. (2019) Design of 3D Printable Concrete based on the Relationship between Flowability of Cement Paste and Optimum Aggregate Content, Cem. & Concr. Compos., 104, p.103406.
  27. Zhou, L., Gou, M., Zhang, H. (2023) Investigation on the Applicability of Bauxite Tailings as Fine Aggregate to Prepare 3D Printing Mortar, Constr. & Build. Mater., 364, p.129904.