• Title/Summary/Keyword: 패각 잔골재

Search Result 22, Processing Time 0.021 seconds

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Investigation of Waste Shell Fine Aggregates on the Material Characteristics of Cement Mortars (패각 잔골재가 시멘트 모르타르 재료 특성에 미치는 영향 분석)

  • Oh, Seo-Eun;Choi, Seung-Ha;Kim, Kyuwon;Han, Soo-Ho;Chung, Sang-Yeop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • This study explores the utilization of common marine wastes, specifically seashells, such as oysters and cockles, as alternative fine aggregates in construction materials. The considered seashells were cleaned and pre-processed for use as a substitute for aggregate in mortar. Cement mortar specimens were prepared under different conditions, such as substitution ratios and the cleaning status of the seashells. The compressive strength of the mortars specimens was evaluated, and the solid and porous structures of each specimen were analyzed using microstructure analysis methods such as XRD, SEM, and micro-CT. The results confirmed that oyster and cockle seashells are composed of different calcium carbonate polymorphs, and their microstructural characteristics influence the mechanical properties of the cement mortar specimens.

A Study on the Fundamental Properties of Concrete Using of the Oyster Shells (굴패각 콘크리트의 기본특성에 관한 연구)

  • Koo, Hae-Shik;Jun, Hak-Su;An, Yong-Deok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study is to analyze the application of the oyster shells as a substitute fine aggregate of concrete. For this purpose, the fundamental experiments of the composed materials and the variations of the main factors on it were considered and then the variations of workability and strength properties of the specimens with each case were also studied. The experimental results on the properties as construction material showed that the use of oyster shells in concrete would not cause abnormal chemical reactions or lead to the formation of any new objects, the workability and strengths decreased with increase in proportion of oyster shells. The compressive strength of concrete with oyster shells is developed as much as that of normal concrete and the grain size of oyster shells is superior on 3.0~5.0mm and the percentage of substitution of them to fine aggregate about 30% from the properties of concrete with them. The relationship equation between compressive strength and tensile strength is ( ).

A Study on Flexural Behavior of Reinforced Concrete Beam Using Cockle Shells as Fine Aggregate (잔골재로 고막 패각을 사용한 철근콘크리트 보의 휨 거동에 관한 연구)

  • Kim, Jeong-Sup;Cho, Cheol-Hee;Kim, Kang-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2004
  • As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. The specimen which was used general aggregate showed the highest value and ductility capacity was getting decreased as the amount of cockle shell was getting increased in the ductility capacity of specimen. We might conclude that the reason of the yield strength's decline was the lack of the bond strength which was caused by the amount of cockle shell.

Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates (잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2014
  • Large amounts of waste shells have been produced each year from shellfish raising industries located in Korean costal areas. Due to the limited space for the waste shell disposal, the related environmental problem has been a serious issue. It is believed that using the waste shells as a source of aggregate for mortar, concrete or bricks can be a good solution. In this research, possibility of utilizing waste shells as an aggregate of mortar is investigated. Waste shells of manila clam, cockle, clam, sea mussel, and oyster were properly crushed, sieved, and sorted to meet the requirements of the grading of standard fine aggregate. After that, the waste shells were used as partial and total replacement of the fine aggregate, and their absorption and 28-day compressive strengths of mortar were measured. In general, replacement of waste shells increased the absorption and decreased the strength. However, one specimen with cockle increased compressive strength as replacement ratio increased. Mortar with cockle of 50% and 100% replacement showed higher compressive strength than that of control mortar. This increase of compressive strength was found to be affected by the strong interfacial bonding properties of the cockle and a cement matrix.

The Examination Fire Resistance of Mortar According to Particle Size Distrivution as Oyster Shell Fine Aggregate (굴 패각의 잔골재 입도분포 변화에 따른 모르타르의 내화성 검토)

  • Choi, In-Kwon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.71-72
    • /
    • 2017
  • The oyster shell is lightweight and exhibits strength characteristics similar to sand. In this study, mortar specimens were fabricated by crushing them and processed to 5mm or less of the fine aggregate standard, and examined the fire resistance of the mortar according to changes in particle size distribution. In this experiment, seven particle size distribution conditions were tested. In addition, the mixing ratio was fixed at 1: 3, and the experiment was conducted in terms of the volume ratio because the densities of sand and oyster shells were different.

  • PDF

The Examination of Strength Properties of Mortar with Variation of Fine Particle Size Distribution of Oyster Shell (굴 패각의 잔골재 입도분포 변화에 따른 모르타르의 강도특성)

  • Choi, In-Kwon;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.43-44
    • /
    • 2017
  • In this study, mortar strength was measured by grinding oyster shell and changing the particle size distribution. For the experiment, the oyster shells were processed to a fine aggregate size of 10mm or less. In this experiment, seven particle size distribution conditions were selected and tested. Because oyster shells are different in density from sand, their volume ratios were calculated and converted to mass ratios of 1: 3. The strength test was carried out one day after the steam curing.

  • PDF

A Study on Ductility Capacity of Reinforced Concrete Beam without Shear Reinforcement Using Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 전단보강근이 없는 철근콘크리트 보의 연성에 관한 연구)

  • Kim, Jeong-Sup;Kim, kwang-seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.139-146
    • /
    • 2005
  • As a result of compressive strength, specimens having mixture rate of cockle shells of $15\%\;and\;20\%$ showed more increases of compressive strength than non-mixture specimens as age increases. Ductility capacity of specimens was higher in specimens mixing cockle shells than in specimens using general fine aggregates and specimen of $10\%$ of cockle shells was highest in ductility capacity. To sum up all experimental results, ductility capacity of specimen without shear reinforcement using mixture of cockle shell was higher than non-mixture specimen and it is considered that mixture of cockle shells up to $20\%$ as fine aggregate for concrete will be available. Continuous researches on durability, workability and economy of crushed cockle shells used for substitute fine aggregate of concrete will be needed.

A Study on the Shear Behavior of Reinforced Concrete Beams Using of Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 철근콘크리트 보의 전단 거동에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • 1) As result of specimen with shear reinforcing bar of reinforced concrete beam, ductile coefficient of specimen was high in specimen containing Cockle shells based on non-mixed specimen. In increase rate of specimens, yield strength was similar in specimens containing Cockle shells and non-mixed specimens and maximum strength was higher in specimen containing Cockle shells. 2) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~ 15% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

A Strength Properties According to Water cement ratio using Oyster shell as Aggregate (굴 패각을 잔골재로 사용한 모르타르의 물시멘트비에 따른 강도특성)

  • Jung, Ui-In;Choi, In-Kwon;Heo, Min-Hoe;Kim, Bong-Joo;Won, Chul-Hee;Choi, Ho-Rim
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.154-155
    • /
    • 2016
  • Oyster shell is light weighted and its strength characteristic is similar to sand. So we produced mortar test piece using grounded oyster shell powder under 0.5mm, which is a standard of fine aggregate, and reviewed strength properties according to water cement ratio. In our test, we used two kinds of oyster shell particles: below 0.6mm and 1.2~2.5mm. Water cement ratio is varied 40% to 100% and we found that flexural strength and compressive strength are decreased in higher water cement ratio.

  • PDF