DOI QR코드

DOI QR Code

Automated Finite Element Analyses for Structural Integrated Systems

통합 구조 시스템의 유한요소해석 자동화

  • Chongyul Yoon (Department of Construction and Environmental Engineering, Hongik University)
  • 윤종열 (홍익대학교 건설환경공학과)
  • Received : 2023.11.15
  • Accepted : 2023.12.20
  • Published : 2024.02.29

Abstract

An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

구조물의 동적 해석 자동화는 구조 통합 시스템에서 중요한 역할을 한다. 해석 결과에 따른 신속한 대피 또는 경고 조치가 신속하게 이루어지도록 해석 모듈은 짧은 실시간에 해석 결과를 출력해야 한다. 구조 해석법으로 세계적으로 가장 많이 사용되는 방법은 유한요소법이다. 유한요소법이 널리 사용되는 이유 중 하나는 사용의 편리다. 그러나 사용자가 유한요소망을 입력해야 하는데 요소망의 요소 수는 계상량과 정비례하고 요소망의 적절성은 에러와 연관된다. 본 연구는 시간 영역 동적 해석에서 전 단계 해석 결과를 사용하여 계산된 대표 변형률 값으로 오차를 평가하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보와 간단한 프레임 예제를 통하여 적절한 요소망 형성, 정확성, 그리고 연산 효율성을 검증하였다. 이 방법의 간단함이 지진 하중, 풍하중, 비선형 해석 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용될 수 있는 것을 보여 준다.

Keywords

Acknowledgement

This work was supported by 2021 Hongik University Research Fund.

References

  1. Bathe, K.J., Wilson, E.L. (1976) Numerical Methods in Finite Element Analysis, Prentice Hall, Englewood Cliffs.
  2. Belytschko, T., Hughes, J.R., Bathe, K.J. (1996) Finite Element Procedures, Prentice-Hall, Englewood Cliffs.
  3. Jeong, Y.C., Yoon, C. (2003) Representative Strain Value Based Adaptive Mesh Generation for Plane Stress, Hongik J. Sci. & Tech., 7, pp.71~86.
  4. McFee, S., Giannacopoulos, D. (2001) Optimal Discretizations in Adaptive Finite Element Electromagnetics, Int. J. Numer. Meth. Eng., 52(9), pp.939~978.
  5. Newmark, N.M. (1959) A Method of Computation for Structural Dynamics, J. Eng. Mech. Division, Am. Soc. Civil Eng., 85(EM3), pp.67~94. https://doi.org/10.1061/JMCEA3.0000098
  6. Ohnimus, S., Stein, E., Walhorn, E. (2001) Local Error Estimates of FEM for Displacements and Stresses in Linear Elasticity by Solving Local Neumann Problems, Int. J. Numer. Meth. Eng., 52(7), pp.727~746.
  7. Yoon, C. (2014) Adaptive Finite Element Mesh Generation for Dynamic Planar Problems, J. Korea Soc. Hazard Mitig., 14(4), pp.43~49.
  8. Yoon, C. (2019) An Automated Adaptive Finite Element Mesh Generation for Dynamics, EESK J. Earthq. Eng., 23(1), pp.83~88.
  9. Yoon, C. (2023) An Automated Adaptive Finite Element Mesh Generation for Dynamics, EESK J. Earthq. Eng., 27(2), pp.77~82.
  10. Zhu, J.Z., Zienkiewicz, O.C., Hinton, E., Wu, J. (1991) A New Approach to the Development of Automatic Quadrilateral Mesh Generation, Int. J. Numer. Meth. Eng., 32, pp.849~866.
  11. Zienkiewcz, O.C., Zhu, J.Z. (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Int. J. Numer. Meth. Eng., 24, pp.337~357.
  12. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. (2005) The Finite Element Method: Its Basis and Fundamentals, 6th Ed. Elsevier Butterworth-Heinemann, Oxford.