DOI QR코드

DOI QR Code

열처리 온도에 따른 BZO 박막의 전기적 및 광학적 특성

Electrical and Optical Properties of BZO Thin Films Deposited by RF Magnetron Sputtering with Various Annealing Temperatures

  • 강성준 (전남대학교 전기및반도체공학전공) ;
  • 정양희 (전남대학교 전기및반도체공학전공)
  • 투고 : 2023.11.29
  • 심사 : 2024.02.17
  • 발행 : 2024.02.29

초록

본 연구에서는 유리 기판 위에 BZO박막을 제작한 후, 열처리 온도가 박막의 전기적 및 광학적 특성에 미치는 영향을 조사하였다. XRD 분석 결과, 열처리 온도에 무관하게 모든 박막이 c-축 배향성을 나타내었다. 열처리 온도가 400에서 600℃ 로 증가함에 따라 반가폭(FWHM)은 1.65에서 1.07° 로 감소하였다. 가시광 영역(400-800nm)에서의 평균 투과도는 열처리 온도에 큰 영향 없이 85% 이상의 높은 값을 나타내었다. Hall 측정결과, 열처리 온도에 따라 캐리어 농도와 이동도는 증가하였고 비저항은 감소하였다. 600℃ 에서 열처리한 BZO박막의 비저항과 캐리어 농도는 각각 9.75 × 10-2 Ω·cm 과 4.21×1019 cm-3 로 가장 우수한 값을 나타내었다. 향후 BZO박막의 공정 조건과 열처리 조건을 최적화시킨다면, 차세대 광전자 소자에 응용될 수 있는 매우 유망한 재료로 주목받을 것으로 기대된다.

The effects of annealing temperature on the optical and electrical properties of BZO thin films, grown on glass substrate, have been investigated. Analysis of the XRD shows that regardless of the annealing temperature, all BZO thin films indicate the c-axis orientation. The full width of half maximum (FWHM) decreases from 1.65 to 1.07° as the annealing temperature increases from 400 to 600℃. The average transmittance in the visible light region showed a high value of 85% without significantly affecting the annealing temperature. The results of Hall effect measurements indicate that the carrier concentration and mobility increased and the resistivity decreased as the annealing temperature increased. The resistivity and the carrier concentration of the BZO thin films annealed 600℃ were 9.75×10-2 Ω·cm and 4.21×1019 cm-3 respectively, showing the best value. The optimization of deposition and annealing conditions will certainly make the BZO thin films promising materials for the application to the next generation of optoelectronic devices.

키워드

과제정보

이 논문은 전남대학교 학술연구비(과제번호 : 2022-0080) 지원에 의하여 연구되었음.

참고문헌

  1. S. Bose, S. Mandal, A. Barua, and S. Mukhopadhyay, "Properties of boron doped ZnO films prepared by reactive sputtering method : Application to amorphous silicon thin film solar cells," J. Mater. Sci. Technol., vol. 55, no. 15, Oct. 2020, pp. 136-143. https://doi.org/10.1016/j.jmst.2019.12.004
  2. V. Kumar, V. Kumar, S. Som, L. Purohit, O. Ntwaeaborwa, and H. Swart, "Role of swift heavy ions irradiation on the emission of boron doped ZnO thin films for near white light application," J. Alloys and Compd., vol. 594, no. 5, May 2014, pp. 32-38. https://doi.org/10.1016/j.jallcom.2014.01.110
  3. L. Wong and Y. Lai, "Characterization of boron-doped ZnO thin films prepared by magnetron sputtering with (100-x)ZnO-xB2O3 ceramic targets," Thin Solid Films, vol. 583, no. 29, May 2015, pp. 205-211. https://doi.org/10.1016/j.tsf.2015.04.003
  4. L. Gao, Y. Zhang, J. Zhang, and K. Xu, "Boron doped ZnO thin films fabricated by RF-magnetron sputtering," Appl. Surf. Sci., vol. 257, Nov. 2011, pp. 2498-2502. https://doi.org/10.1016/j.apsusc.2010.10.009
  5. S. Kang, Y. Joung, H. Shin, and Y. Yoon, "Effect of substrate temperature on structural, optical and electrical properties of ZnO thin films depodited by pulsed laser deposition," J. Mater Sci : Mater electron., vol. 19, Nov. 2007, pp. 1073-1078. https://doi.org/10.1007/s10854-007-9469-0
  6. L. Wong and Y. Lai, "Substrate temperature dependence of material, optical, and electronic properties of boron-doped ZnO thin films," Opt. Mater., vol. 115, May 2021, pp. 111052.
  7. B. Sarma, D. Barman, and B. Sarma, "AZO (Al : ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide," Appl. Surf. Sci., vol. 479, no. 15, June 2019, pp. 786-795. https://doi.org/10.1016/j.apsusc.2019.02.146
  8. H. Shin, Y. Joung, and S. Kang, "Effects of substrate temperature on figure of merit of transparent conducting GZO thin films," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 5, Oct. 2023, pp. 797-802.
  9. W. Li, Y. Li, G. Du, N. Chen, S. Liu, S. Wang, H. Huang, C. Lu, and X. Niu, "Enhanced electrical and optical properties of boron-doped ZnO films grown by low pressure chemical vapor deposition for amorphous silicon solar cells," Ceram. Int., vol. 42, issue 1, Jan. 2016, pp. 1361-1365. https://doi.org/10.1016/j.ceramint.2015.09.075
  10. J. Hur, J. Kim, S. Jang, J. Song, D. Byun, C. Son, J. Yun, and K. Yoon, "Growth of boron-doped-ZnO by RF magnetron sputtering for CIGS solar cells," J. Korean Phys. Soc., vol. 53, no. 1, July 2008, pp. 442-445. https://doi.org/10.3938/jkps.53.442
  11. Z. Gibbs, A. LaLonde, and G. Snyder, "Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy," New J. Phys., vol. 15, no. 7, Jan. 2013, pp. 075020.
  12. S. Kim, H. Yoon, D. Kim, S. Kim, and J. Leem, "Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol-gel dip-coating method," Opt. Mater., vol. 35, issue 12, Oct. 2013, pp. 2418-2424. https://doi.org/10.1016/j.optmat.2013.06.048
  13. K. Ellmer, "Resistivity of polycrystalline zinc oxide films : current status and physical limit," J. Phys. D Appl. Phys., vol. 34, no. 21, Nov. 2001, pp. 3097-3108. https://doi.org/10.1088/0022-3727/34/21/301