DOI QR코드

DOI QR Code

공정압력이 GTZO 박막의 구조적, 전기적 및 광학적 특성에 미치는 영향

Effect of Working Pressure on the Structural, Electrical, and Optical Properties of GTZO Thin Films

  • 최병균 (전남대학교 전기 및 반도체공학과) ;
  • 정양희 (전남대학교 전기 및 반도체공학과) ;
  • 강성준 (전남대학교 전기 및 반도체공학과)
  • 투고 : 2023.11.29
  • 심사 : 2024.02.17
  • 발행 : 2024.02.29

초록

본 연구에서는 고주파 마그네트론 스퍼터링 법으로 공정압력을 1에서 7mTorr 로 변화시켜 가며 GTZO (Ga-Ti-Zn-O)박막을 제작하여, 구조적 특성과 전기적 및 광학적 특성을 조사하였다. XRD측정을 통해 공정압력에 무관하게 모든 GTZO박막이 c-축으로 우선 성장함을 확인할 수 있었고, 1mTorr 에서 제작한 GTZO 박막이 반가폭 0.38˚ 로 가장 우수한 결정성을 나타내었다. 가시광 영역(400~800 nm)에서의 평균 투과도는 공정압력에 상관없이 80% 이상의 값을 나타내었고, 공정압력이 증가함에 따라 캐리어 농도가 감소하고 이로 인해 에너지 밴드갭이 좁아지는 Burstein - Moss 효과도 관찰할 수 있었다. 공정압력 1mTorr 에서 증착한 GTZO박막의 재료 평가 지수는 9.08 × 103 Ω-1·cm-1 로 가장 우수한 값을 나타내었고 이때 비저항과 가시광 영역에서의 평균 투과도는 각각 5.12 × 10-4 Ω·cm 과 80.64 % 이었다.

In this study, GTZO(Ga-Ti-Zn-O) thin films were deposited at various working pressures (1~7mTorr) by RF magnetron sputtering to examine the structural, electrical, and optical properties. All GTZO thin films exhibited c-axis preferential growth regardless of working pressure, the GTZO thin film deposited at 1mTorr showed the most excellent crystallinity having 0.38˚ of FWHM. The average transmittance in the visible light region (400~800nm) showed 80% or more regardless of the working pressure. We could observed the Burstein-Moss effect that carrier concentration decrease with the increase of working pressure and thus the energy band gap is narrowed. Figure of merits of GTZO thin film deposited at 1mTorr showed the highest value of 9.08 × 103 Ω-1·cm-1, in this case resistivity and average transmittance in the visible light region were 5.12 × 10-4 Ω·cm and 80.64%, respectively.

키워드

참고문헌

  1. T. Boucherka, M. Touati, A. Berbadj, and N. Brihi, "Al3+ doping induced changes of structural, morphology, photoluminescence, optical and electrical properties of SnO2 thin films as alternative TCO for optoelectronic applications," Ceram. Int., vol. 49, issue 4, Feb. 2023, pp. 5728-5737.
  2. S. Shinde, P. Shinde, C. Bhosale, and K. Rajpure, "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films," J. Phys. D Appl. Phys., vol. 41, no. 10, May 2008, pp. 105109-105125. https://doi.org/10.1088/0022-3727/41/10/105109
  3. H. Chang, S. Liu, Y. Wu, L. Huang, Y. Hung, L. Chang, C. Wu, C. Chen, and C. Wu, "Ga-doped TiZnO transparent conductive oxide used as an alternative anode in blue, green, and red phosphorescent OLEDs," Phys. Chem. Chem. Phys., vol. 16, Aug. 2016, pp. 19618-19624.
  4. S. Kang and Y. Joung, "Dependence of electrical and optical properties on substrate temperatures of AZO thin films," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 6, Dec. 2023, pp. 1067-1072.
  5. D. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. Chisholm, and T. Steiner, "ZnO: growth, doping & processing," Mater. Today, vol. 7, issue 6, June 2004, pp. 34-40.
  6. W. S. Liu, S. Y. Wu, C. H. Tseng, and C. Y. Hung, "Quality Improvement of High Performance Transparent Conductive Ti-Doped GaZnO Thin Film," Thin Solid Films, vol. 570, May 2014, pp. 568-573. https://doi.org/10.1016/j.tsf.2014.05.028
  7. H. Shin, Y. Joung, and S. Kang, "Effects of substrate temperature on figure of merit of transparent conducting GZO thin films," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 5, Oct. 2023, pp. 797-802.
  8. W. Liu, W. Chen, S. Wu, and K. Hsueh, "Improved Crystal Quality of Transparent Conductive Ga-doped ZnO Films by Magnesium Doping Through Radio-Frequency Magnetron Sputtering Preparation," J. Am. Ceram. Soc., vol. 97, issue 2, Feb. 2014, pp. 473-480. https://doi.org/10.1111/jace.12630
  9. J. Chung, J. Chen, and C. Tseng, "The Influence of Titanium on the Properties of Zinc Oxide Films Deposited by Radio Frequency Magnetron Sputtering," Appl. Surf. Sci., vol. 254, issue 9, Feb. 2008, pp. 2615-2620. https://doi.org/10.1016/j.apsusc.2007.09.094
  10. J. Liu, S. Ma, X. Huang, L. Ma, F. Li, F. Yang, Q. Zhao, and X. Zhang, "Effect of Ti-doped concentration on the microstructures and optical properties of ZnO thin films," Superlattice. Microst., vol. 52, no. 4, Oct. 2012, pp. 765-773. https://doi.org/10.1016/j.spmi.2012.06.021
  11. T. Tohsophon, N. Wattanasupinyo, B. Silskulsuk, and N. Sirikulrat, "Effect of aluminum and indium co-doping on zinc oxide films prepared by dc magnetron sputtering," Thin Solid Films, vol. 520, issue 2, Nov. 2011, pp. 726-729. https://doi.org/10.1016/j.tsf.2011.06.079
  12. S. Kang, Y. Joung, H. Shin, and Y. Yoon, "Effect of substrate temperature on structural, optical and electrical properties of ZnO thin films depodited by pulsed laser deposition," J. Mater Sci : Mater electron., vol. 19, Nov. 2007, pp. 1073-1078.
  13. L. Gao, Y. Zhang, J. Zhang, and K. Xu, "Boron doped ZnO thin films fabricated by RF-magnetron sputtering," Appl. Surf. Sci., vol. 257, Nov. 2011, pp.2498-2502. https://doi.org/10.1016/j.apsusc.2010.10.009
  14. J. Kim, J. Lee, J. Lim, J. Kim, and S. Yun, "High-performance transparent conducting Ga-doped ZnO films deposited by RF magnetron sputter deposition," Jpn. J. Appl. Phys., vol. 49, Apr. 2010, pp. 04DP09-1-04DP09-4.