DOI QR코드

DOI QR Code

SVN-Ostrowski Type Inequalities for (α, β, γ, δ) -Convex Functions

  • Received : 2024.01.05
  • Published : 2024.01.30

Abstract

In this paper, we present the very first time the generalized notion of (α, β, γ, δ) - convex (concave) function in mixed kind, which is the generalization of (α, β) - convex (concave) functions in 1st and 2nd kind, (s, r) - convex (concave) functions in mixed kind, s - convex (concave) functions in 1st and 2nd kind, p - convex (concave) functions, quasi convex(concave) functions and the class of convex (concave) functions. We would like to state the well-known Ostrowski inequality via SVN-Riemann Integrals for (α, β, γ, δ) - convex (concave) function in mixed kind. Moreover we establish some SVN-Ostrowski type inequalities for the class of functions whose derivatives in absolute values at certain powers are (α, β, γ, δ)-convex (concave) functions in mixed kind by using different techniques including Hölder's inequality and power mean inequality. Also, various established results would be captured as special cases with respect to convexity of function.

Keywords

References

  1. M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(1), (2010), 1071-1076. https://doi.org/10.1016/j.aml.2010.04.038
  2. A. Arshad and A. R. Khan, Hermite-Hadamard-Fejer Type Integral Inequality for s-p-Convex Functions of Several Kinds, TJMM., 11 (2), (2019), 25-40.
  3. E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54(1), (1948), 439-460. https://doi.org/10.1090/S0002-9904-1948-08994-7
  4. P. Biswas, S. Pramanik, and B. C. Giri, TOPSIS Strategy for Multi-Attribute Decision Making with Trapezoidal Neutrosophic Numbers, Neutrosophic Sets and Systems, 19 (1), (2018), 29-39.
  5. W. W. Breckner, Stetigkeitsaussagen Fur Eine Klasse Verallgemeinerter Konvexer Funktionen in Topologischen Linearen Raumen. (German), Publ. Inst. Math., 23 (37), (1978), 13-20.
  6. P. Cerone and S.S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math, 37 (2), (2004), 299-308. https://doi.org/10.1515/dema-2004-0208
  7. W. Congxin and M. Ming, On embedding problem of fuzzy number space: Part 1, Fuzzy Sets and Systems, 44 (1), (1991), 33-38. https://doi.org/10.1016/0165-0114(91)90030-T
  8. W.Congxin and G. Zengtai, On Henstock integral of fuzzynumber-valued functions (I), Fuzzy Sets and Systems, 120 (1), (2001) 523-532. https://doi.org/10.1016/S0165-0114(99)00057-3
  9. S. S. Dragomir, A Functional Generalization of Ostrowski Inequality via Montgomery identity, Acta Math. Univ. Comenianae, LXXXIV., 1(2), (2015), 63-78.
  10. S. S. Dragomir, Integral inequalities of Jensen type for 𝜆-convex functions, In Proceedings of RGMIA, Res. Rep. Coll., 1 (17), (2014).
  11. S. S. Dragomir, Inequalities of Jensen Type for 𝜙-Convex Functions, Fasciculi Mathematici, 5(1), (2015), 35-52. https://doi.org/10.1515/fascmath-2015-0013
  12. S. S. Dragomir, A Companion of Ostrowski's Inequality for Functions of Bounded Variation and Applications, Int. J. Nonlinear Anal. Appl., 5 (2), (2014), 89-97.
  13. S. S. Dragomir, On the Ostrowski's Integral Inequality for Mappings with Bounded Variation and Applications, Math. Inequal. Appl., 4 (1), (2001), 59-66. https://doi.org/10.7153/mia-04-05
  14. S. S. Dragomir, Refinements of the Generalised Trapozoid and Ostrowski Inequalities for Functions of Bounded Variation, Arch. Math., 91 (5), (2008), 450-460. https://doi.org/10.1007/s00013-008-2879-2
  15. S. S. Dragomir and N. S. Barnett, An Ostrowski Type Inequality for Mappings whose Second Derivatives are Bounded and Applications, J. Indian Math. Soc. (N.S.), 66 (4), (1999), 237-245.
  16. S. S. Dragomir, P. Cerone, N. S. Barnett and J. Roumeliotis, An Inequality of the Ostrowski Type for Double Integrals and Applications for Cubature Formulae, Tamsui Oxf. J. Math. Sci., 16(1), (2000), 1-16.
  17. S. S. Dragomir, P. Cerone and J. Roumeliotis, A new Generalization of Ostrowski Integral Inequality for Mappings whose Derivatives are Bounded and Applications in Numerical Integration and for Special Means, Appl. Math. Lett., 13(1), (2000), 19-25. https://doi.org/10.1016/S0893-9659(99)00139-1
  18. S. S.Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (3), (1995), 335-341.
  19. A. Ekinci, Klasik Esitsizlikler Yoluyla Konveks Fonksiyonlar icin Integral Esitsizlikler, Ph.D. Thesis, Thesis ID: 361162 in tez2.yok.gov.tr Ataturk University, 2014.
  20. S. Gal, Approximation theory in fuzzy setting, Chapter 13 in Handbook of Analytic Computational Methods in Applied Mathematics (edited by G. Anastassiou), Chapman and Hall, CRC Press, Boca Raton, New York, (2000), 617-666.
  21. E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical Mathematics and Mathematical Physics, (Russian), 166(1), (1985), 138-142.
  22. G. A. Gomez, J. V. Moya, and J. E. Ricardo, Method to measure the formation of pedagogical skills through neutrosophic numbers of unique value, Revista Asociacion Latinoamericana de Ciencias Neutrosoficas, ISSN 2574-1101, 11 (1), (2020), 41-48.
  23. N. Irshad, A. R. Khan and A. Nazir, Extension of Ostrowki Type Inequality Via Moment Generating Function, Adv. Inequal. Appl., 2(1), (2020), 1-15.
  24. N. Irshad, A. R. Khan and M. A. Shaikh, Generalization of Weighted Ostrowski Inequality with Applications in Numerical Integration, Adv. Ineq. Appl., 7(1), (2019), 1-14.
  25. N. Irshad, A. R. Khan, and Muhammad Awais Shaikh, Generalized Weighted Ostrowski-Gruss Type Inequality with Applications, Global J. Pure Appl. Math., 15 (5), (2019), 675-692.
  26. N. Irshad and A. R. Khan, On Weighted Ostrowski Gruss Inequality with Applications, TJMM, 10 (1), (2018), 15-22.
  27. N. Irshad and A. R. Khan, Generalization of Ostrowski Inequality for Differentiable functions and its applications to numerical quadrature rules, J. Math. Anal, 8(1), (2017), 79-102.
  28. O. Kaleva, Fuzzy diferential equations, Fuzzy Sets and Systems, 24(1) (1987) 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
  29. D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, (1991).
  30. A. S. Molina, W. A. C. Calle, and J. D. B. Remache, The application of Microsoft Solution Framework Software Testing using Neutrosophic Numbers, Neutrosophic Sets and Systems, 37(1), (2020), 267-276.
  31. M. Mullai and R. Surya, Neutrosophic Inventory Backorder Problem Using Triangular Neutrosophic Numbers, Neutrosophic Sets and Systems, 31(1), (2020), 148-155.
  32. M. A. Noor and M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5(1), (2013), 129 -136.
  33. A. M. Ostrowski, Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10(1), (1938), 226-227. https://doi.org/10.1007/BF01214290
  34. E. Set, S. Karatas, I. Mumcu, Fuzzy Ostrowski type inequalties for (α, m) - convex functions, Journal of New theory, 6(1), (2015), 54-65.
  35. S. Varo𝑠̆anec, On h-convexity, J. Math. Anal. Appl., 326(1), (2007), 303-311. https://doi.org/10.1016/j.jmaa.2006.02.086
  36. Z. G. Xiao, and A. H. Zhang, Mixed power mean inequalities, Research Communication on Inequalities, 8 (1), (2002), 15-17.
  37. X. Yang, A note on Hoሷlder inequality, Appl. Math. Comput., 134(1), (2003), 319-322 https://doi.org/10.1016/S0096-3003(01)00286-7