Acknowledgement
This research was funded by Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant in Aid for Scientific Research [C], No. 18K10029).
References
- ILO (1999) Social and labor issues in small-scale in mines. Reports for the tripartite meeting on social and labor issues in small-scale in mines. International Labor Office, Geneva
- Taux K, Kraus T, Kaife A (2022) Mercury exposure and its health effects in workers in the artisanal and small-scale gold mining (ASGM) sector-a systematic review. Int J Environ Res Public Health 19:2081. https://doi.org/10.3390/ijerph19042081
- Bose-O'Reilly S, Lettmeier B, Gothe RM, Beinhof C, Siebert U, Drasch G (2008) Mercury as a serious health hazard for children in gold mining areas. Environ Res 107:89-97. https://doi.org/10.1016/j.envres.2008.01.009
- Ohlander J, Huber SM, Schomaker M, Heumann C, Schierl R, Michalke B, Jenni OG, Cafisch J, Munoz DM, von Ehrenstein OS, Radon K (2013) Risk factors for mercury exposure of children in a rural mining town in northern Chile. PLoS One 8:e79756. https://doi.org/10.1371/journal.pone.0079756
- Hinton JJ, Veiga MM, Veiga ATC (2003) Clean artisanal gold mining: a utopian approach? J Clean Prod 11:99-115. https://doi.org/10.1016/S0959-6526(02)00031-8
- Veiga MM, Maxson PA, Hylander LD (2006) Origin and consumption of mercury in small-scale gold mining. J Clean Prod 14:436-447. https://doi.org/10.1016/j.jclepro.2004.08.010
- Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209-230. https://doi.org/10.1016/j.taap.2003.11.032
- Yoshida M, Watanabe C, Kishimoto M, Yasutake A, Satoh M, Sawada M, Akama Y (2006) Behavioral changes in metallothionein-null mice after the cessation of long-term, low-level exposure to mercury vapor. Toxicol Lett 161:210-218. https://doi.org/10.1016/j.toxlet.2005.09.007
- Li P, Feng X, Qiu G, Shang L, Wang S (2008) Mercury exposure in the population from Wuchuan mercury mining area, Guizhou, China. Sci Total Environ 395:72-79. https://doi.org/10.1016/j.scitotenv.2008.02.006
- Qiu G, Feng X, Li P, Wang S, Li G, Shang L, Fu X (2008) Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. J Agric Food Chem 56:2465-2468. https://doi.org/10.1021/jf073391a
- Yoshida M, Honda A, Watanabe C, Satoh M, Yasutake A (2014) Neurobehavioral changes in response to alterations in gene expression profiles in the brains of mice exposed to low and high levels of mercury vapor during postnatal development. J Toxicol Sci 39:561-570. https://doi.org/10.2131/jts.39.561
- Yoshida M, Watanabe C, Satoh M, Yasutake A, Sawada M, Ohtsuka Y, Akama Y, Tohyama C (2004) Susceptibility of metallothionein-null mice to the behavioral alterations caused by exposure to mercury vapor at human-relevant concentration. Toxicol Sci 80:69-73. https://doi.org/10.1093/toxsci/kfh138
- Auer F, Franco Taveras E, Klein U, Kesenheimer C, Fleischhauer D, Mohrlen F, Frings S (2021) Anoctamin 2-chloride channels reduce simple spike activity and mediate inhibition at elevated calcium concentration in cerebellar Purkinje cells. PLoS One 16:e0247801. https://doi.org/10.1371/journal.pone.0247801
- Zhang W, Schmelzeisen S, Parthier D, Frings S, Mohrlen F (2015) Anoctamin Calcium-Activated Chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLoS One 10:e0142160. https://doi.org/10.1371/journal.pone.0142160
- Kwon OC, Song JJ, Yang Y, Kim SH, Kim JY, Seok MJ, Hwang I, Yu JW, Karmacharya J, Maeng HJ, Kim J, Jho EH, Ko SY, Son H, Chang MY, Lee SH (2021) SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 13:e13076. https://doi.org/10.15252/emmm.202013076
- Lang F, Strutz-Seebohm N, Seebohm G, Lang UE (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588:3349-3354. https://doi.org/10.1113/jphysiol.2010.190926
- Fredriksson A, Dencker L, Archer T, Danielsson BR (1996) Prenatal coexposure to metallic mercury vapour and methylmercury produce interactive behavioural changes in adult rats. Neurotoxicol Teratol 18:129-134. https://doi.org/10.1016/0892-0362(95)02059-4
- Yoshida M, Suzuki M, Satoh M, Yasutake A, Watanabe C (2011) Neurobehavioral effects of combined prenatal exposure to low-level mercury vapor and methylmercury. J Toxicol Sci 36:73-80. https://doi.org/10.2131/jts.36.73
- Yoshida M, Lee JY, Satoh M, Watanabe C (2018) Neurobehavioral effects of postnatal exposure to low-level mercury vapor and/or methylmercury in mice. J Toxicol Sci 43:11-17. https://doi.org/10.2131/jts.43.11
- Yoshida M, Lee J-Y, Shimizu-Furusawa H, Satoh M, Watanabe C (2016) Neurobehavioral toxicity related to the exposure of weaning mice to low-level mercury vapor and methylmercury and influence of aging. Fundamental Toxicol Sci 3:185-193. https://doi.org/10.2131/fts.3.185
- Yoshida M, Shimizu N, Suzuki M, Watanabe C, Satoh M, Mori K, Yasutake A (2008) Emergence of delayed methylmercury toxicity after perinatal exposure in metallothionein-null and wild-type C57BL mice. Environ Health Perspect 116:746-751. https://doi.org/10.1289/ehp.10906
- Yoshida M, Watanabe C, Honda A, Satoh M, Yasutake A (2013) Emergence of delayed behavioral effects in offspring mice exposed to low levels of mercury vapor during the lactation period. J Toxicol Sci 38:1-6. https://doi.org/10.2131/jts.38.1