Acknowledgement
The authors would like to extend their sincere thanks to the Department of Zoology and Sophisticated Instrumentation Center (SIC), Dr. Harisingh Gour Central University, Sagar, India for proving laboratory and instrumental facilities. The authors are thankful for the DST-FIST Grant (DST, Govt. of India) to the Department.
References
- Ahmed WMS, Ibrahim MA, Helmy NA, ElKashlan AM, Elmaidomy AH, Zaki AR (2022) Amelioration of aluminum-induced hepatic and nephrotoxicity by Premna odorata extract is mediated by lowering MMP9 and TGF-β gene alterations in Wistar rat. Environ Sci Pollut Res 29:72827-72838. https://doi.org/10.1007/s11356-022-20735-8
- Dordevic D, Buchtova H, Jancikova S, Macharackova B, Jarosova M, Vitez T, Kushkevych I (2019) Aluminum contamination of food during culinary preparation: case study with aluminum foil and consumers' preferences. Food Sci Nutr 7:3349-3360. https://doi.org/10.1002/fsn3.1204
- Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10 Suppl 1:1-269. https://doi.org/10.1080/10937400701597766
- Geyikoglu F, Turkez H, Bakir TO, Cicek M (2013) The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicol Ind Health 29:780-791. https://doi.org/10.1177/0748233712440140
- Gameiro J, Fonseca JA, Outerelo C, Lopes JA (2020) Acute kidney injury: from diagnosis to prevention and treatment strategies. J Clin Med 9:1704. https://doi.org/10.3390/jcm9061704
- Carbone F, Montecucco F, Mach F, Pontremoli R, Viazzi F (2013) The liver and the kidney: two critical organs infuencing the atherothrombotic risk in metabolic syndrome. Thromb Haemost 110:940-958. https://doi.org/10.1160/TH13-06-0499
- Mohamed B, Fares NH, Ashaat NA, Abozeid F (2022) Biochemical, histological, and immunohistochemical changes associated with Alcl3-induced hepatic injury in rats: protective effects of L-carnitine. Egypt J Histol 45:90-100. https://doi.org/10.21608/EJH.2021.52300.1395
- Yousef MI (2004) Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology 199:47-57. https://doi.org/10.1016/j.tox.2004.02.014
- Paz LNF, Moura LM, Feio DCA, Cardoso MdSG, Ximenes WLO, Montenegro RC, Alves APN, Burbano RR, Lima PDL (2017) Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride. Chemosphere 175:130-137. https://doi.org/10.1016/j.chemosphere.2017.02.011
- Tan P, Jin L, Qin X, He B (2022) Natural flavonoids: potential therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 13:1005312. https://doi.org/10.3389/fphar.2022.1005312
- Ammar NM, Hassan HA, Abdallah HMI, Aff SM, Elgamal AM, Farrag ARH, El-Gendy AEG, Farag MA, Elshamy AI (2022) Protective effects of Naringenin from Citrus sinensis (var. Valencia) peels against CCl(4)-induced hepatic and renal injuries in rats assessed by metabolomics, histological and biochemical analyses. Nutrients 14:841. https://doi.org/10.3390/nu14040841
- Hernandez-Aquino E, Muriel P (2018) Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol 24:1679-1707. https://doi.org/10.3748/wjg.v24.i16.1679
- Mershiba SD, Dassprakash MV, Saraswathy SD (2013) Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep 40:3681-3691. https://doi.org/10.1007/s11033-012-2444-8
- Sahu N, Mishra G, Chandra HK, Nirala SK, Bhadauria M (2020) Naringenin mitigates antituberculosis drugs induced hepatic and renal injury in rats. J Traditional Complement Med 10:26-35. https://doi.org/10.1016/j.jtcme.2019.01.001
- Rai R, Jat D, Mishra SK (2023) Naringenin ameliorates aluminum toxicity-induced testicular dysfunctions in mice by suppressing oxidative stress and histopathological alterations. Syst Biol Reprod Med. https://doi.org/10.1080/19396368.2023.2203794 [Online ahead of print]
- Roy A, Das A, Das R, Haldar S, Bhattacharya S, Haldar PK (2014) Naringenin, a citrus flavonoid, ameliorates arsenic-induced toxicity in swiss albino mice. J Environ Pathol Toxicol Oncol 33:195-204. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2014010317
- Ishfaq PM, Mishra S, Mishra A, Ahmad Z, Gayen S, Jain SK, Tripathi S, Mishra SK (2022) Inonotus obliquus aqueous extract prevents histopathological alterations in liver induced by environmental toxicant Microcystin. Curr Res Pharmacol Drug Discov 3:100118. https://doi.org/10.1016/j.crphar.2022.100118
- Ishfaq PM, Mishra A, Mishra S, Ahmad Z, Gayen S, Jain SK, Tripathi S, Mishra SK (2021) Inonotus obliquus aqueous extract suppresses carbon tetrachloride-induced hepatic injury through modulation of antioxidant enzyme system and anti-inflammatory mechanism. Clin Cancer Drugs 8:122-136. https://doi.org/10.2174/2212697X08666211130130119
- Dhar D, Baglieri J, Kisseleva T, Brenner DA (2020) Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood) 245:96-108. https://doi.org/10.1177/1535370219898141
- Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelisch M (2004) Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A 101:4308-4313. https://doi.org/10.1073/pnas.0306706101
- Ito F, Sono Y, Ito T (2019) Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants (Basel) 8:72. https://doi.org/10.3390/antiox8030072
- Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, NguyenKhoa T, Nguyen AT, Zingraf J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304-1313. https://doi.org/10.1038/ki.1996.186
- Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23-38. https://doi.org/10.1016/s0009-8981(03)00003-2
- Marrocco I, Altieri F, Peluso I (2017) Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Med Cell Longev 2017:6501046. https://doi.org/10.1155/2017/6501046
- Zhang H, Wang P, Yu H, Yu K, Cao Z, Xu F, Yang X, Song M, Li Y (2018) Aluminum trichloride-induced hippocampal inflammatory lesions are associated with IL-1β-activated IL-1 signaling pathway in developing rats. Chemosphere 203:170-178. https://doi.org/10.1016/j.chemosphere.2018.03.162
- Al Dera HS (2016) Protective effect of resveratrol against aluminum chloride induced nephrotoxicity in rats. Saudi Med J 37:369-378. https://doi.org/10.15537/smj.2016.4.13611
- Mannaa FA, Abdel-Wahhab KG (2016) Physiological potential of cytokines and liver damages. Hepatoma Res 2:131-143. https://doi.org/10.20517/2394-5079.2015.58
- Ramesh G, Reeves WB (2004) Inflammatory cytokines in acute renal failure. Kidney Int 66:S56-S61. https://doi.org/10.1111/j.1523-1755.2004.09109.x
- Fischer WJ, Dietrich DR (2000) Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmcol 164:73-81. https://doi.org/10.1006/taap.1999.8861
- Li S, Hong M, Tan H-Y, Wang N, Feng Y (2016) Insights into the role and interdependence of oxidative stress and inflammation in Liver Diseases. Oxidative Med Cell Longev 2016:4234061. https://doi.org/10.1155/2016/4234061
- Eckle VS, Buchmann A, Bursch W, Schulte-Hermann R, Schwarz M (2004) Immunohistochemical detection of activated caspases in apoptotic hepatocytes in rat liver. Toxicol Pathol 32:9-15. https://doi.org/10.1080/01926230490260673
- Yang B, El Nahas AM, Thomas GL, Haylor JL, Watson PF, Wagner B, Johnson TS (2001) Caspase-3 and apoptosis in experimental chronic renal scarring. Kidney Int 60:1765-1776. https://doi.org/10.1046/j.1523-1755.2001.00013.x
- Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495-516. https://doi.org/10.1080/01926230701320337
- Ferrell L (2000) Liver pathology: cirrhosis, Hepatitis, and primary liver tumors. Update and diagnostic problems. Mod Pathol 13:679-704. https://doi.org/10.1038/modpathol.3880119
- Tsai MH, Fang YW, Liou HH, Leu JG, Lin BS (2018) Association of serum aluminum levels with mortality in patients on chronic hemodialysis. Sci Rep 8:16729. https://doi.org/10.1038/s41598-018-34799-5
- Musso CG, Alvarez Gregori J, Jauregui JR, Macias Nunez JF (2012) Creatinine, urea, uric acid, water and electrolytes renal handling in the healthy oldest old. World J Nephrol 1:123-126. https://doi.org/10.5527/wjn.v1.i5.123
- Al-Kahtani M, Morsy K (2019) Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats. Environ Sci Pollut Res Int 26:32189-32197. https://doi.org/10.1007/s11356-019-06417-y
- Al-Otaibi SS, Arafah MM, Sharma B, Alhomida AS, Siddiqi NJ (2018) Synergistic effect of quercetin and α-lipoic acid on aluminium chloride induced neurotoxicity in rats. J Toxicol 2018:2817036. https://doi.org/10.1155/2018/2817036
- Amini N, Maleki M, Badavi M (2022) Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: a review. Avicenna J Phytomed 12:357-370. https://doi.org/10.22038/ajp.2022.19620
- Marcellinus AE, Onitsha EN (2022) Nephroprotective potential of Spondias mombin against aluminum chloride induced-renal injury in female albino rats. World J Adv Sci Technol 2:1-10. https://doi.org/10.53346/wjast.2022.2.1.0033
- Balgoon MJ (2019) Assessment of the protective effect of Lepidium sativum against Aluminum-induced liver and kidney effects in albino rat. Biomed Res Int 2019:4516730. https://doi.org/10.1155/2019/4516730
- Elsawy H, Alzahrani AM, Alfwuaires M, Abdel-Moneim AM, Khalil M (2021) Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats. Biomed Pharmacother 143:112180. https://doi.org/10.1016/j.biopha.2021.112180
- Amudha K, Pari L (2011) Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem Biol Interact 193:57-64. https://doi.org/10.1016/j.cbi.2011.05.003
- Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20:6008. https://doi.org/10.3390/ijms20236008
- Ghorbel I, Maktouf S, Fendri N, Jamoussi K, Ellouze Chaabouni S, Boudawara T, Zeghal N (2016) Co-exposure to aluminum and acrylamide disturbs expression of metallothionein, proinflammatory cytokines and induces genotoxicity: biochemical and histopathological changes in the kidney of adult rats. Environ Toxicol 31:1044-1058. https://doi.org/10.1002/tox.22114
- Wu LH, Lin C, Lin HY, Liu YS, Wu CY, Tsai CF, Chang PC, Yeh WL, Lu DY (2016) Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol Neurobiol 53:1080-1091. https://doi.org/10.1007/s12035-014-9042-9
- Mai M, Jiang Y, Wu X, Liu G, Zhu Y, Zhu W (2020) Association of TGF-β1, IL-4, and IL-10 polymorphisms with chronic kidney disease susceptibility: a meta-analysis. Front Genet 11:79. https://doi.org/10.3389/fgene.2020.00079
- Wang J, Niu X, Wu C, Wu D (2018) Naringenin modifies the development of lineage-specific effector CD4(+) T cells. Front Immunol 9:2267. https://doi.org/10.3389/fmmu.2018.02267
- Sirovina D, Orsolic N, Gregorovic G, Koncic MZ (2016) Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: a preliminary study. Arh Hig Rada Toksikol 67:19-24. https://doi.org/10.1515/aiht-2016-67-2708
- Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37:1396-1407. https://doi.org/10.3109/0886022x.2015.1074462