DOI QR코드

DOI QR Code

Phloretin targets SIRT1 to alleviate oxidative stress, apoptosis, and inflammation in deep venous thrombosis

  • Xiaodong Wang (Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine) ;
  • Jin Yan (Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine) ;
  • Xiaolong Ni (Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine) ;
  • Sipin Hu (Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine) ;
  • Mingwan Zhang (Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine) ;
  • Yin Ying (Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine)
  • Received : 2023.02.28
  • Accepted : 2023.08.14
  • Published : 2024.01.15

Abstract

Deep vein thrombosis (DVT) is a type of venous thromboembolism posing a serious threat to health on a global scale. Phloretin is a potential natural product that has a variety of pharmacological activities. Besides, some Chinese medicines reported that deacetylase sirtuin (SIRT)1 treats DVT by anti-inflammatory and anti-platelet production. However, the specific binding targets and binding modes have not been elaborated. The present study was to investigate whether phloretin attenuates DVT in model rats and oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs), and to explore its potential target. The results revealed that the treatment of phloretin, especially pretreatment of it elevated tissue plasminogen activator (t-PA), superoxide dismutase (SOD), prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT), and cell apoptosis proteins whereas it suppressed plasminogen activator inhibitor (PAI), malondialdehyde (MDA), reactive oxygen species (ROS), fibrinogen (FIB) in DVT rats and cells. Concurrently, phloretin inhibited collagen type I alpha 1 (COL1A1), transforming growth factor-β1 (TGF-β1), and inflammatory factors while it enhanced nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase 1 (HO-1). In addition, 20 µM phloretin exerted powerful effective protection in HUVECs with DVT model. Later, the surface plasmon resonance (SPR) confirmed that phloretin has a high affinity with SIRT1. Furthermore, siRNA-SIRT1 transfection abolished the protective effect of phloretin against ox-LDL-induced DVT in HUVECs, indicating that phloretin targets SIRT1 to alleviate oxidative stress, cell apoptosis, and inflammation in DVT rats and HUVECs.

Keywords

Acknowledgement

This work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LGF21H020002), Chinese Medical and Health Research Project of Zhejiang Province (2021ZA038) and Chinese Medical and Health Research Project of Zhejiang Province (2022ZA039).

References

  1. Du H, Chen J (2018) Occurrence of venous thromboembolism in patients with lung cancer and its anticoagulant therapy. Zhongguo Fei Ai Za Zhi 21:784-789. https://doi.org/10.3779/j.issn.1009-3419.2018.10.09
  2. Lee LH, Gallus A, Jindal R, Wang C, Wu CC (2017) Incidence of venous thromboembolism in asian populations: a systematic review. Thromb Haemost 117:2243-2260. https://doi.org/10.1160/th17-02-0134
  3. Olaf M, Cooney R (2017) Deep venous thrombosis. Emerg Med Clin N Am 35:743-770. https://doi.org/10.1016/j.emc.2017.06.003
  4. Ng TL, Smith DE, Mushtaq R, Patil T, Dimou A, Yang S et al (2019) ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events. J Thorac Oncol 14:596-605. https://doi.org/10.1016/j.jtho.2018.12.001
  5. Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A (2020) Reactive oxygen species in venous thrombosis. Int J Mol Sci 21:1918. https://doi.org/10.3390/ijms21061918
  6. Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9-17. https://doi.org/10.1038/nchembio.1416
  7. Kang C, Chung E, Diffee G, Ji LL (2013) Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Exp Gerontol 48:1343-1350. https://doi.org/10.1016/j.exger.2013.08.004
  8. Liu H, Li P, Lin J, Chen W, Guo H, Lin J et al (2019) Danhong Huayu Koufuye prevents venous thrombosis through antiinflammation via Sirtuin 1/NF-κB signaling pathway. J Ethnopharmacol 241:111975. https://doi.org/10.1016/j.jep.2019.111975
  9. Xin G, Wei Z, Ji C, Zheng H, Gu J, Ma L et al (2017) Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release. Free Radic Biol Med 108:247-257. https://doi.org/10.1016/j.freeradbiomed.2017.02.018
  10. Ying Y, Jiang C, Zhang M, Jin J, Ge S, Wang X (2019) Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging 11:2822-2835. https://doi.org/10.18632/aging.101954
  11. Yao X, Chen W, Liu J, Liu H, Zhan JY, Guan S et al (2019) Deep vein thrombosis is modulated by inflammation regulated via sirtuin 1/NF-κB signalling pathway in a rat model. Thromb Haemost 119:421-430. https://doi.org/10.1055/s-0038-1676987
  12. Wu M, Li P, An Y, Ren J, Yan D, Cui J et al (2019) Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol Res 150:104489. https://doi.org/10.1016/j.phrs.2019.104489
  13. de Oliveira MR (2016) Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. BioFactors 42:13-40. https://doi.org/10.1002/biof.1256
  14. Kim MS, Park SH, Han SY, Kim YH, Lee EJ, Yoon Park JH et al (2014) Phloretin suppresses thrombin-mediated leukocyte-platelet-endothelial interactions. Mol Nutr Food Res 58:698-708. https://doi.org/10.1002/mnfr.201300267
  15. Schonfelder T, Jackel S, Wenzel P (2017) Mouse models of deep vein thrombosis. Gefasschirurgie 22 Suppl 1:28-33. https://doi.org/10.1007/s00772-016-0227-6
  16. Najafan M, Jahromi MZ, Nowroznejhad MJ, Khajeaian P, Kargar MM, Sadeghi M et al (2012) Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep 39:5299-5306. https://doi.org/10.1007/s11033-011-1328-7
  17. Anand MA, Suresh K (2014) Biochemical profiling and chemo-preventive activity of phloretin on 7,12-dimethylbenz (a) anthracene induced oral carcinogenesis in male golden Syrian hamsters. Toxicol Int 21:179-185. https://doi.org/10.4103/0971-6580.139805
  18. Songyang Y, Li W, Li W, Yang J, Song T (2022) The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. Int immunopharmacol 110:109049. https://doi.org/10.1016/j.intimp.2022.109049
  19. Jia Q, Cao H, Shen D, Li S, Yan L, Chen C et al (2019) Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int J Mol Med 44:893-902. https://doi.org/10.3892/ijmm.2019.4263
  20. Liu J, Ren Y, Kang L, Zhang L (2014) Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin. Int J Mol Med 33:1341-1347. https://doi.org/10.3892/ijmm.2014.1681
  21. Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT et al (2019) Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev 2019:7092151. https://doi.org/10.1155/2019/7092151
  22. Raskob GE, Angchaisuksiri P, Blanco AN, Buller H, Gallus A, Hunt BJ et al (2014) Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol 34:2363-2371. https://doi.org/10.1161/atvbaha.114.304488
  23. Reichmann D, Voth W, Jakob U (2018) Maintaining a healthy proteome during oxidative stress. Mol Cell 69:203-213. https://doi.org/10.1016/j.molcel.2017.12.021
  24. Aloni PD, Nayak AR, Chaurasia SR, Deopujari JY, Chourasia C, Purohit HJ et al (2016) Effect of Fagonia arabica on thrombin induced release of t-PA and complex of PAI-1 tPA in cultured HUVE cells. J Tradit Complement Med 6:219-223. https://doi.org/10.1016/j.jtcme.2015.03.002
  25. Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11:2090. https://doi.org/10.3390/nu11092090
  26. Ying Y, Jin J, Ye L, Sun P, Wang H, Wang X (2018) Phloretin prevents diabetic cardiomyopathy by dissociating keap1/Nrf2 complex and inhibiting oxidative stress. Front Endocrinol 9:774. https://doi.org/10.3389/fendo.2018.00774
  27. Akin-Bali DF, Eroglu T, Ilk S, Egin Y, Kankilic T (2020) Evaluation of the role of Nrf2/Keap1 pathway-associated novel mutations and gene expression on antioxidant status in patients with deep vein thrombosis. Exp Ther Med 20:868-881. https://doi.org/10.3892/etm.2020.8790
  28. Li X, Zhan J, Hou Y, Hou Y, Chen S, Luo D et al (2019) Coenzyme Q10 regulation of apoptosis and oxidative stress in H(2)O(2) induced BMSC death by modulating the Nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury. Oxid Med Cell Longev 2019:6493081. https://doi.org/10.1155/2019/6493081
  29. Yang S, Zheng Y, Hou X (2019) Lipoxin A4 restores oxidative stress-induced vascular endothelial cell injury and thrombosis-related factor expression by its receptor-mediated activation of Nrf2-HO-1 axis. Cell Signal 60:146-153. https://doi.org/10.1016/j.cellsig.2019.05.002
  30. Yue H, Febbraio M, Klenotic PA, Kennedy DJ, Wu Y, Chen S et al (2019) CD36 enhances vascular smooth muscle cell proliferation and development of neointimal hyperplasia. Arterioscler Thromb Vasc Biol 39:263-275. https://doi.org/10.1161/atvbaha.118.312186
  31. Cui D, Liu S, Tang M, Lu Y, Zhao M, Mao R et al (2020) Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption. Phytomedicine 66:153111. https://doi.org/10.1016/j.phymed.2019.153111
  32. Hou JR, Wang YH, Zhong YN, Che TT, Hu Y, Bao J et al (2021) Protective effect of flavonoids from a deep-sea-derived Arthrinium sp. against ox-LDL-induced oxidative injury through activating the AKT/Nrf2/HO-1 pathway in vascular endothelial cells. Mar Drugs 19:712. https://doi.org/10.3390/md19120712
  33. Lin Y, Xie Y, Hao Z, Bi H, Liu Y, Yang X et al (2021) Protective effect of uric acid on ox-LDL-induced HUVECs injury via keap1-Nrf2-ARE pathway. J Immunol Res 2021:5151168. https://doi.org/10.1155/2021/5151168
  34. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV et al (2020) Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev 2020:5245308. https://doi.org/10.1155/2020/5245308
  35. Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X et al (2019) Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res 11:2140-2154
  36. Wang D, Wang Q, Yan G, Qiao Y, Tang C (2015) Phloretin inhibits platelet-derived growth factor-BB-induced rat aortic smooth muscle cell proliferation, migration, and neointimal formation after carotid injury. J Cardiovasc Pharmacol 65:444-455. https://doi.org/10.1097/fc.0000000000000213