• Title/Summary/Keyword: Mercury vapor

Search Result 54, Processing Time 0.025 seconds

Protection of Mercury induced Acute Respiratory Injury by Inhaled Oxidizing Agent (수은에 의한 급성호흡손상시 산화물질의 억제효과)

  • 황태호
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.259-265
    • /
    • 2001
  • Mercury vapor inhalation-induced acute respiratory failure(ARF) has been reported to be fatal. This study was designed to observe the possible mechanism of inhaled mercury vapor poisoning in the respiratory system. Sixty percent of rats(12/20) exposed to mercury vapor were dead within 72 hours of exposure whereas all the rats(20/20) exposed to mercury vapor combined with dithiothreitol(DTT) vapor survived. The histological observation showed that ARF was a direct cause of the death induced by mercury vapor inhalation, which was significantly circumvented by DTT vapor. Cyclic AMP mediated chloride secretion was inhibited by luminal side but not serosal side sulfhydryl blocking agents (Hf$^{2+}$ $\rho$-chloromercuribenzoic acid or $\rho$-chloromercuriphenyl sulfonic acid) in a dose-dependent manner in a primary cultured rat airway monolayer. The inhibitory component of cAMP induced chloride secretion was completely restored by luminal side DTT(0.5mM). these results suggest that the oxidized form(Hg$^{2+}$) of mercury vapor(Hg0) contribute to ARF and subsequent death. The finding is important as it can provide important information regarding emergency manipulation of ARF patients suffering from by mercury vapor poisoning.ing.

  • PDF

Characteristics of Mercury Concentration in Vapor Phase from Compact Fluorescent Lamp (소형형광등(Compact Fluorescent Lamp)의 파쇄에 따른 기상에서의 수은농도 특성)

  • Rhee, Seung-Whee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.652-656
    • /
    • 2014
  • Mercury amount in vapor phase from 3 types of CFL(compact fluorescent lamp) are estimated by measuring mercury concentration in vapor phase. The mercury concentration in vapor phase from CFL is sharply decreased during initial time and then the change in the mercury concentration is slightly decreased up to 24 hours. The mercury concentration in vapor phase is almost constant after 42 hours, which can be called by stabilized concentration. It can be estimated that the stabilized concentration is caused by the evaporation of mercury in the residues of broken CFL and can be affected by temperature and pressure in crushing apparatus. The mercury concentration for CFL manufactures are in the order of A < B < C as the same results of the initial mercury concentration and the stabilized concentration in vapor phase. As increased air flow rate, the partial pressure of mercury is decreased and the amount of mercury is reduced. Initially, the mercury concentration in vapor phase emitted from CFLs is higher than the regulatory level of $0.1mg/m^3$ in the specific facilities regardless of air flow rate. Hence, it is absolutely necessary that mercury in vapor phase should be controlled at the point of crushing campact fluorescent lamp.

A STUDY OF THE MERCURY VAPOR MEASUREMENT DURING AMALGAM REMOVAL (충전(充塡)된 아말감 제거시(除去時) 발생(發生)되는 수은증기량(水銀蒸氣量) 측정(測定)에 관(關)한 연구(硏究))

  • Na, Keung-Kyun;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.85-92
    • /
    • 1984
  • The aim of this study was to examine the influence of the speed of grinding and coolants on mercury vaporization during amalgam removal. Forty amalgam filled stone dies were stored at $37^{\circ}C$ and 100% relative humidity for 7 days prior to the beginning of the mercury vapor experiment and were divided into 4 different groups; In Group I; Used by high speed without coolant & evacuator during amalgam removal. In Group II; Used by high speed with coolant & evacuator during amalgam removal. In Group III; Used by low speed without coolant & evacuator during amalgam removal. In Group IV; Used by low speed with coolant & evacuator during amalgam removal. The amalgam specimens were removed in a 30-second time period and mercury vapor was collected with membrane filter at 27mm from the site of removal and 45 degree above there. Samples in Group II, IV were removed with coolant spray at a flow rate of 30 ml/min with high-velocity evacuator. Mercury vapor collected membrane filter was analysed by Atomic Absorption Spectrophotometer using cold vapor method. The results were as follows; 1. The mercury vapor levels were obtained all of the Groups. 2. The mercury vapor levels of the Group II, IV (with coolant & evacuator) were less than that of the Group I, III (without coolant & evacuator). 3. The highest mercury vapor level recorded during amalgam removal procedure was Group I (used by high speed without coolant & evacuator) and its record was $0.78{\pm}0.09\;mg/m^3$, which exceed the T.L.V. by 15 times. 4. The mercury vapor level of the Group IV (used by low speed with coolant & evacuator) was more than that of the Group II (used by high speed with coolant & evacuator), but its difference was not significant, statistically. (p > 0.05)

  • PDF

Investigation of Turn-off Condition for Reliable Operation of Mercury Vapor Lamp

  • Park, Jun-Sung;Jeong, Sang-Sik;Lee, Seung-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1152-1154
    • /
    • 2007
  • The distributions of mercury (Hg) in the bulb of a mercury vapor lamp are significantly affected by its turn-off conditions. Most of mercury should be attached to the electrodes before ignition by a proper turn-off condition. In the present study, the effect of the transient profiles of lamp cooling after turn-off on the distribution of Hg was investigated.

  • PDF

Prenconcentration and Determination of Mercury (II) and Methylmercury in Waters by Immobilized 1,5-Diphenylcarbazone and Cold Vapor Atomic Absorption Spectrometry

  • Dadfarnia, Shayessteh;Salmanzadeh, Ali Mohammed;Haji Shabani, Ali Mohammed
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1719-1723
    • /
    • 2002
  • 1,5-diphenylcarbazone was immobilized on sodium dodecyl sulfate coated alumina. The alumina particle was effectively used for collection of mercury(II) and methylmercury cations at sub-ppb level. The adsorbed mercury was eluted with l mol $L^{-1}$ of hydrobromic acid solution. The mercury(II) was then directly measured by cold vapor atomic absorption spectrometry utilizing tin (II) chloride where as the total mercury was determined after the oxidation of methylmercury into the inorganic mercury. The methylmercury concentration was calculated by the difference between the value of total mercury and mercury (II). Mercury (II) and methylmercury cations were completely recovered from water with a preconcentration factor of 100 (for 1 L solution.) Relative standard deviation at Hg L ${\mu}gL^{-1}$ level 1.7%(n=8) and the limit of detection was 0.11 ${\mu}gL^{-1}$. The procedure was applied to spring water, well water and seawater and accuracy was assessed through recovery experiments.

Vapor Phase Mercury Removal by Sulfur Impregnated Activated Carbons and Sulfur Impregnation Protocol

  • Lee, Si-Hyun;Cha, Sun-Young;Park, Yeong-Seong
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Mercury has been identified as a potential health and environmental hazardous material. Activated carbon adsorption offers promising potential for the control of mercury emissions, and sulfur impregnated (sulfurized) activated carbons has been shown to be an effective sorbent for the removal of vapor phase $Hg{\circ}$ from sources. In this work, vapor phase mercury adsorption by sulfur impregnated activated carbons were investigated. Sulfur impregnated activated carbons were made by variation of impregnation temperature, and the comparison of adsorption characteristics with commercial virgin and sulfurized carbons were made. Factors affecting the adsorption capacity of virgin and sulfurized activated carbons such as pore characteristics, functional groups and sulfur impregnation conditions were discussed. It was found that the sulfur allotropes plays a critical role in adsorption of mercury vapor by sulfurized activated carbons.

  • PDF

A Study of the Optimum Pore Structure for Mercury Vapor Adsorption

  • Kim, Byung-Joo;Bae, Kyong-Min;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1507-1510
    • /
    • 2011
  • In this study, mercury vapor adsorption behaviors for some kinds of porous materials having various pore structures were investigated. The specific surface area and pore structures were studied by BET and D-R plot methods from $N_2$/77 K adsorption isotherms. It was found that the micropore materials (activated carbons, ACs) showed the highest mercury adsorption capacity. In a comparative study of mesoporous materials (SBA-15 and MCM-41), the adsorption capacity of the SBA-15 was higher than that of MCM-41. From the pore structure analysis, it was found that SBA-15 has a higher micropore fraction compared to MCM-41. This result indicates that the mercury vapor adsorptions can be determined by two factors. The first factor is the specific surface area of the adsorbent, and the second is the micropore fraction when the specific surface areas of the adsorbent are similar.

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal

  • Bae, Kyong-Min;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.238-246
    • /
    • 2014
  • People have been concerned about mercury emissions for decades because of the extreme toxicity, persistence, and bioaccumulation of methyl Hg transformed from emitted Hg. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies. This review provides useful information to scientists and engineers in this field.