DOI QR코드

DOI QR Code

Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal

  • Received : 2014.09.02
  • Accepted : 2014.10.05
  • Published : 2014.10.31

Abstract

People have been concerned about mercury emissions for decades because of the extreme toxicity, persistence, and bioaccumulation of methyl Hg transformed from emitted Hg. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies. This review provides useful information to scientists and engineers in this field.

Keywords

References

  1. Watters JI, Mason JG. Investigation of the Complexes of Mercury (II) with Ethylenediamine Using the Mercury Electrode1. J Am Chem Soc, 78, 285 (1956). http://dx.doi.org/10.1021/ja01583a010.
  2. Du W, Yin L, Zhuo Y, Xu Q, Zhang L, Chen C. Catalytic Oxidation and Adsorption of Elemental Mercury over $CuCl_2$-Impregnated Sorbents. Ind Eng Chem Res, 53, 582 (2014). http://dx.doi.org/10.1021/ie4016073.
  3. Won JH, Lee TG. Estimation of total annual mercury emissions from cement manufacturing facilities in Korea. Atmos Environ, 62, 265 (2012). http://dx.doi.org/10.1016/j.atmosenv.2012.08.035.
  4. Krishnan SV, Gullett BK. Sorption of elemental mercury by activated carbons. Environ Sci Technol, 28, 1506 (1994). http://dx.doi.org/10.1021/es00057a020.
  5. Kolker A, Senior CL, Quick JC. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl Geochem, 21, 1821 (2006). http://dx.doi.org/10.1016/j.apgeochem.2006.08.001.
  6. Skodras G, Diamantopoulou I, Pantoleontos G, Sakellaropoulos GP. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor. J Hazard Mater, 158, 1 (2008). http://dx.doi.org/10.1016/j.jhazmat.2008.01.073.
  7. Qiao S, Chen J, Li J, Qu Z, Liu P, Yan N, Jia J. Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina. Ind Eng Chem Res, 48, 3317 (2009). http://dx.doi.org/10.1021/ie801478w.
  8. Cho JH, Eom Y, Lee TG. Pilot-test of the calcium sodium phosphate (CNP) process for the stabilization/solidification of various mercury-contaminated wastes. Chemosphere, 117, 374 (2014). http://dx.doi.org/10.1016/j.chemosphere.2014.07.080.
  9. Zhuang Z, Yang Z, Zhou S, Wang H, Sun C. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation. Chem Eng J, (2014). http://dx.doi.org/10.1016/j.cej.2014.05.010.
  10. Karatza D, Lancia A, Prisciandaro M, Musmarra D, Celso GM. Influence of oxygen on adsorption of elemental mercury vapors onto activated carbon. Fuel, 111, 485 (2013). http://dx.doi.org/10.1016/j.fuel.2013.03.068.
  11. Mullett M, Pendleton P, Badalyan A. Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chem Eng J, 211-212, 133 (2012). http://dx.doi.org/10.1016/j.cej.2012.09.098.
  12. Tan Z, Sun L, Xiang J, Zeng H, Liu Z, Hu S, Qiu J. Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon, 50, 362 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.036.
  13. An J, Shang K, Lu N, Jiang Y, Wang T, Li J. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. J Hazard Mater, 268, 237 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.01.022.
  14. Hu C, Zhou J, Luo Z, Cen K. Oxidative Adsorption of Elemental Mercury by Activated Carbon in Simulated Coal-Fired Flue Gas. Energy Fuels, 25, 154 (2011). http://dx.doi.org/10.1021/ef101100y.
  15. Ie IR, Hung CH, Jen YS, Yuan CS, Chen WH. Adsorption of vaporphase elemental mercury ($Hg^0$) and mercury chloride ($HgCl_2$) with innovative composite activated carbons impregnated with $Na_2S$ and $S^0$ in different sequences. Chem Eng J, 229, 469 (2013). http://dx.doi.org/10.1016/j.cej.2013.06.059.
  16. Zhang A, Zheng W, Song J, Hu S, Liu Z. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chem Eng J, 236, 29 (2014). http://dx.doi.org/10.1016/j.cej.2013.09.060.
  17. Senior CL, Johnson SA. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants. Energy Fuels, 19, 859 (2005). http://dx.doi.org/10.1021/ef049861.
  18. Cho JH, Eom Y, Lee TG. Stabilization/solidification of mercury- contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes. J Hazard Mater, 278, 474 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.06.026.
  19. Wu C, Cao Y, Dong Z, Cheng C, Li H, Pan W. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler. J Environ Sci, 22, 277 (2010). http://dx.doi.org/10.1016/S1001-0742(09)60105-4.
  20. Pudasainee D, Kim JH, Yoon YS, Seo YC. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD. Fuel, 93, 312 (2012). http://dx.doi.org/10.1016/j.fuel.2011.10.012.
  21. Liu X, Wang S, Zhang L, Wu Y, Duan L, Hao J. Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 111, 621 (2013). http://dx.doi.org/10.1016/j.fuel.2013.03.052.
  22. Stergarsek A, Horvat M, Frkal P, Stergarsek J. Removal of $Hg^0$ from flue gases in wet FGD by catalytic oxidation with air-An experimental study. Fuel, 89, 3167 (2010). http://dx.doi.org/10.1016/j.fuel.2010.04.006.
  23. Lee KJ, Lee TG. A review of international trends in mercury management and available options for permanent or long-term mercury storage. J Hazard Mater, 241-242, 1 (2012). http://dx.doi.org/10.1016/j.jhazmat.2012.09.025.
  24. Lee TG, Hyun JE. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury. Chemosphere, 62, 26 (2006). http://dx.doi.org/10.1016/j.chemosphere.2005.04.048.
  25. Zeng H, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel, 83, 143 (2004). http://dx.doi.org/10.1016/S0016-2361(03)00235-7.
  26. Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multiwalled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A, 385, 13 (2004). http://dx.doi.org/10.1016/j.msea.2004.03.041.
  27. Rodrigues G, de Paiva J, do Carmo JB. Recycling of carbon fibers inserted in composite of DGEBA epoxy matrix by thermal degradation. Polym Degrad Stabil, 109, 50 (2014). http://dx.doi.org/10.1016/j.polymdegradstab.2014.07.005.
  28. Park SJ, Donnet JB. Anodic surface treatment on carbon fibers: Determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. J Colloid Interface Sci, 206, 29 (1998). http://dx.doi.org/10.1006/jcis.1998.5672.
  29. Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). http://dx.doi.org/10.1016/j.electacta.2006.09.060.
  30. Park SJ, Kim MH. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci, 35, 1901 (2000). http://dx.doi.org/10.1023/A:1004754100310.
  31. Li M, Wen X, Liu J, Tang T. Synergetic effect of epoxy resin and maleic anhydride grafted polypropylene on improving mechanical properties of polypropylene/short carbon fiber composites. Compos Pt A-Appl Sci Manuf, 67, 212 (2014). http://dx.doi.org/10.1016/j.compositesa.2014.09.001.
  32. Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr (VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2.
  33. Rhee YH, Ahn DJ, Ko MJ, Jin HY, Jin JH, Min NK. Enhanced electrocatalytic activity of plasma functionalized multi-walled carbon nanotube-entrapped poly (3,4-ethylendioxythiophene): poly (styrene sulfonate) photocathode. Electrochim Acta, 146, 68 (2014). http://dx.doi.org/10.1016/j.electacta.2014.09.021.
  34. Park SJ, Park BJ. Electrochemically Modified PAN Carbon Fibers and Interfacial Adhesion in Epoxy-resin Composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571.
  35. Heibati B, Rodriguez-Couto S, Amrane A, Rafatullah M, Hawari A, Al-Ghouti MA. Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms. J Ind Eng Chem, 20, 2939 (2013). http://dx.doi.org/10.1016/j.jiec.2013.10.063.
  36. Park SJ, Cho KS, Ryu SK. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites. Carbon, 41, 1437 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00088-5.
  37. Shim JW, Park SJ, Ryu SK. Effect of modification with $HNO_3$ and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39, 1635 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00290-6.
  38. Park SJ, Jang YS. Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced Phenolic Resin Matrix Composites. J Colloid Interface Sci, 237, 91 (2001). http://dx.doi.org/10.1006/jcis.2001.7441.
  39. Kim S, Park SJ. Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells. J Power Sources, 159, 42 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.041.
  40. Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129.
  41. Park SJ, Seo MK, Lee YS. Surface characteristics of fluorinemodified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00384-6.
  42. Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrog Energy, 33, 4112 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.05.077.
  43. Meng LY, Park SJ. Effect of heat treatment on $CO_2$ adsorption of KOH-activated graphite nanofibers. 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048.
  44. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). http://dx.doi.org/10.1016/j.jiec.2008.11.001.
  45. Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrog Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.
  46. Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). http://dx.doi.org/10.1016/j.jcis.2007.05.033.
  47. Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.
  48. Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mat, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.
  49. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.
  50. Park SJ, Kim KD. Adsorption Behaviors of $CO_2$ and $NH_3$ on Chemically Surface-Treated Activated Carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org//10.1016/j.jcis.2998.6058.
  51. Shen Z, Ma J, Mei Z, Zhang J. Metal chlorides loaded on activated carbon to capture elemental mercury. J Environ Sci, 22, 1814 (2010). http://dx.doi.org/10.1016/S1001-0742(09)60324-7.
  52. Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012.
  53. Lee SJ, Seo YC, Jurng J, Lee TG. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons. Atmos Environ, 38, 4887 (2004). http://dx.doi.org/10.1016/j.atmosenv.2004.05.043.
  54. Mei Z, Shen Z, Zhao Q, Wang W, Zhang Y. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon. J Hazard Mater, 152, 721 (2008). http://dx.doi.org/10.1016/j.jhazmat.2007.07.038.
  55. Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.043.
  56. De M, Azargohar R, Dalai AK, Shewchuk SR. Mercury removal by bio-char based modified activated carbons. Fuel, 103, 570 (2013). http://dx.doi.org/10.1016/j.fuel.2012.08.011.
  57. Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). http://dx.doi.org/10.1016/j.jcis.2004.03.011.
  58. Karatza D, Prisciandaro M, Lancia A, Musmarra D. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors. J Environ Sci, 23, 1578 (2011). http://dx.doi.org/10.1016/S1001-0742(10)60528-1.
  59. Park SJ, Jang YS. Pore Structure and Surface Properties of Chemically Modified Activated Carbons for Adsorption Mechanism and Rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). http://dx.doi.org/10.1006/jcis.2002.8269.
  60. Hsi HC, Chen CT. Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfurimpregnated activated carbon. Fuel, 98, 229 (2012). http://dx.doi.org/10.1016/j.fuel.2012.04.011.
  61. Park SJ, Jang YS. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci, 261, 238 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00083-3.
  62. Saha A, Abram DN, Kuhl KP, Paradis J, Crawford JL, Sasmaz E, Chang R, Jaramillo TF, Wilcox J. An X-ray Photoelectron Spectroscopy Study of Surface Changes on Brominated and Sulfur- Treated Activated Carbon Sorbents during Mercury Capture: Performance of Pellet versus Fiber Sorbents. Environ Sci Technol, 47, 13695 (2013). http://dx.doi.org/10.1021/es403280z.
  63. Saman N, Johari K, Mat H. Adsorption Characteristics of Sulfur- Functionalized Silica Microspheres with Respect to the Removal of Hg(II) from Aqueous Solutions. Ind Eng Chem Res, 53, 1225 (2014). http://dx.doi.org/10.1021/ie402824r.
  64. Reddy KSK, Shoaibi AlA, Srinivasakannan C. Gas-phase mercury removal through sulfur impregnated porous carbon. J Ind Eng Chem, 20, 2969 (2013). http://dx.doi.org/10.1016/j.jiec.2013.10.067.
  65. Ie IR, Chen WC, Yuan CS, Hung CH, Lin YC. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon. J Hazard Mater, 217-218, 43 (2012). http://dx.doi.org/10.1016/j.jhazmat.2012.02.035.
  66. Kim BJ, Bae KM, Park SJ. Microporous and Mesoporous Materials. Microporous Mesoporous Mat, 163, 270 (2012). http://dx.doi.org/10.1016/j.micromeso.2012.05.038.
  67. Bae KM, Kim BJ, Rhee KY, Park SJ. Roles of Metal/Activated Carbon Hybridization on Elemental Mercury Adsorption. J Nanosci Nanotechnol, 14, 5811 (2014). http://dx.doi.org/10.1166/jnn.2014.8459.
  68. Song N, Teng Y, Wang J, Liu Z, Orndorff W, Pan WP. Effect of modified fly ash with hydrogen bromide on the adsorption efficiency of elemental mercury. J Therm Anal Calorim, 116, 1189 (2014). http://dx.doi.org/10.1007/s10973-014-3701-y.
  69. Sasmaz E, Kirchofer A, Jew AD, Saha A, Abram D. Mercury chemistry on brominated activated carbon. Fuel, 99, 188 (2012). http://dx.doi.org/10.1016/j.fuel.2012.04.036.
  70. Yao Y, Velpari V, Economy J. Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel, 116, 560 (2014). http://dx.doi.org/10.1016/j.fuel.2013.08.063.
  71. Tian L, Li C, Li Q, Zeng G, Gao Z, Li S, Fan X. Removal of elemental mercury by activated carbon impregnated with $CeO_2$. Fuel, 88, 1687 (2009). http://dx.doi.org/10.1016/j.fuel.2009.01.022.
  72. Tao S, Li C, Fan X, Zeng G, Lu P, Zhang X. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J, 210, 547 (2012). http://dx.doi.org/10.1016/j.cej.2012.09.028.
  73. Kim BJ, Bae KM, Park SJ. A Study of the Optimum Pore Structure for Mercury Vapor Adsorption. Bull Korean Chem Soc, 32, 1507 (2011). http://dx.doi.org/10.5012/bkcs.2011.32.5.1507.
  74. Xu W, Wang H, Zhu T, Kuang J, Jing P. Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci, 25, 393 (2013). http://dx.doi.org/10.1016/S1001-0742(12)60065-5.
  75. Kolker A, Engle MA, Peucker-Ehrenbrink B. Atmospheric mercury and fine particulate matter in coastal New England: Implications for mercury and trace element sources in the northeastern United States. Atmos Environ, 79, 760 (2013). http://dx.doi.org/10.1016/j.atmosenv.2013.07.031.
  76. Jaworek A, Czech T, Sobczyk AT, Krupa A. Properties of biomass vs. coal fly ashes deposited in electrostatic precipitator. J Electrost, 71, 165 (2013). http://dx.doi.org/10.1016/j.elstat.2013.01.009.
  77. Gao Y, Zhang Z, Wu J, Duan L, Umar A, Sun L, Guo Z, Wang Q. A Critical Review on the Heterogeneous Catalytic Oxidation of Elemental Mercury in Flue Gases. Environ Sci Technol, 47, 10813 (2013). http://dx.doi.org/10.1021/es402495h.
  78. Scala F, Clack HL. Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. J Hazard Mater, 152, 616 (2008). http://dx.doi.org/10.1016/j.jhazmat.2007.07.024.
  79. Wang Y, Liu Y, Mo J, Wu Z. Effects of $Mg^{2+}$ on the bivalent mercury reduction behaviors in simulated wet FGD absorbents. J Hazard Mater, 237-238, 256 (2012). http://dx.doi.org/10.1016/j.jhazmat.2012.08.036.
  80. Sun M, Hou J, Cheng G, Baig SA, Tan L, Xu X. The relationship between speciation and release ability of mercury in flue gas desulfurization (FGD) gypsum. Fuel, 125, 66 (2014). http://dx.doi.org/10.1016/j.fuel.2014.02.012.
  81. Wu S, Wang S, Gao J, Wu Y, Chen G, Zhu Y. Interactions between mercury and dry FGD ash in simulated post combustion conditions. J Hazard Mater, 188, 391 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.01.119.
  82. Kong F, Qiu J, Liu H, Zhao R, Ai Z. Catalytic oxidation of gasphase elemental mercury by nano-Fe2O3. J Environ Sci, 23, 699 (2011). http://dx.doi.org/10.1016/S1001-0742(10)60438-X.
  83. Liu Y, Wang Y, Wang H, Wu Z. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method. Catal Commun, 12, 1291 (2011). http://dx.doi.org/10.1016/j.catcom.2011.04.017.
  84. Xu Y, Zhong Q, Liu X. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature. J Hazard Mater, 283, 252 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.09.034.
  85. Chen W, Ma Y, Yan N, Qu Z, Yang S, Xie J, Guo Y. The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. Fuel, 133, 263 (2014). http://dx.doi.org/10.1016/j.fuel.2014.04.086.
  86. Yang J, Yang Q, Sun J, Liu Q, Zhao D, Gao W. Effects of mercury oxidation on $V_2O_5-WO_3/TiO_2 $ catalyst properties in $NH_3$-SCR process. Catal Commun, 59, 78 (2015). http://dx.doi.org/10.1016/j.catcom.2014.09.049.
  87. Rallo M, Heidel B, Brechtel K. Effect of SCR operation variables on mercury speciation. Chem Eng J, 198-199, 87 (2012). http://dx.doi.org/10.1016/j.cej.2012.05.080.