Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2019R1I1A3A01058584) and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korea government (MSIT) (No. 2021N400).
References
- Adamovich, Y., Adler, J., Meltser, V., Reuven, N. and Shaul, Y. (2014) AMPK couples p73 with p53 in cell fate decision. Cell Death Differ. 21, 1451-1459. https://doi.org/10.1038/cdd.2014.60
- Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luis, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Puschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., Healy, S., Kozlov, A., Munoz-Pinedo, C., Rehm, M., Chevet, E. and Samali, A. (2019) Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 286, 241-278. https://doi.org/10.1111/febs.14608
- Asensio-Lopez, M. C., Soler, F., Pascual-Figal, D., Fernandez-Belda, F. and Lax, A. (2017) Doxorubicin-induced oxidative stress: the protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One 12, e0172803. https://doi.org/10.1371/journal.pone.0172803
- Bravo, R., Parra, V., Gatica, D., Rodriguez, A. E., Torrealba, N., Paredes, F., Wang, Z. V., Zorzano, A., Hill, J. A., Jaimovich, E., Quest, A. F. and Lavandero, S. (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int. Rev. Cell Mol. Biol. 301, 215-290. https://doi.org/10.1016/B978-0-12-407704-1.00005-1
- Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L., Illiano, M., Quaini, F., Rossi, F., Berrino, L., Naviglio, S. and Urbanek, K. (2017) Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid. Med. Cell. Longev. 2017, 1521020. https://doi.org/10.1155/2017/1521020
- Carrara, M., Prischi, F., Nowak, P. R., Kopp, M. C. and Ali, M. M. (2015) Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. Elife 4, e03522. https://doi.org/10.7554/eLife.03522
- Chen, L. L. and Wang, W. J. (2021) p53 regulates lipid metabolism in cancer. Int. J. Biol. Macromol. 192, 45-54. https://doi.org/10.1016/j.ijbiomac.2021.09.188
- Dauer, P., Sharma, N. S., Gupta, V. K., Durden, B., Hadad, R., Banerjee, S., Dudeja, V., Saluja, A. and Banerjee, S. (2019) ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining "stemness". Cell Death Dis. 10, 132. https://doi.org/10.1038/s41419-019-1408-5
- Derdak, Z., Villegas, K. A., Harb, R., Wu, A. M., Sousa, A. and Wands, J. R. (2013) Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J. Hepatol. 58, 785-791. https://doi.org/10.1016/j.jhep.2012.11.042
- Estes, C., Razavi, H., Loomba, R., Younossi, Z. and Sanyal, A. J. (2018) Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123-133. https://doi.org/10.1002/hep.29466
- Flowers, M. T. and Ntambi, J. M. (2008) Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 19, 248-256. https://doi.org/10.1097/MOL.0b013e3282f9b54d
- Galic, S., Loh, K., Murray-Segal, L., Steinberg, G. R., Andrews, Z. B. and Kemp, B. E. (2018) AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife 7, e32656. https://doi.org/10.7554/eLife.32656
- Ge, R. and Kao, C. (2019) Cell surface GRP78 as a death receptor and an anticancer drug target. Cancers (Basel) 11, 1787. https://doi.org/10.3390/cancers11111787
- Goldstein, I., Ezra, O., Rivlin, N., Molchadsky, A., Madar, S., Goldfinger, N. and Rotter, V. (2012) p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 56, 656-662. https://doi.org/10.1016/j.jhep.2011.08.022
- Han, J. and Kaufman, R. J. (2016) The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 57, 1329-1338. https://doi.org/10.1194/jlr.R067595
- Herzig, S. and Shaw, R. J. (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121-135. https://doi.org/10.1038/nrm.2017.95
- Huh, Y., Cho, Y. J. and Nam, G. E. (2022) Recent epidemiology and risk factors of nonalcoholic fatty liver disease. J. Obes. Metab. Syndr. 31, 17-27. https://doi.org/10.7570/jomes22021
- Jensen-Urstad, A. P. and Semenkovich, C. F. (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim. Biophys. Acta 1821, 747-753. https://doi.org/10.1016/j.bbalip.2011.09.017
- Jiang, P., Du, W. and Yang, X. (2013) p53 and regulation of tumor metabolism. J. Carcinog. 12, 21. https://doi.org/10.4103/1477-3163.122760
- Kciuk, M., Gielecinska, A., Mujwar, S., Kolat, D., Kaluzinska-Kolat, Z., Celik, I. and Kontek, R. (2023) Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells 12, 659. https://doi.org/10.3390/cells12040659
- Kim, S. H., Yun, C., Kwon, D., Lee, Y. H., Kwak, J. H. and Jung, Y. S. (2023) Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells. Molecules 28, 1476. https://doi.org/10.3390/molecules28031476
- Konar, S., Hedges, C. P., Callon, K. E., Bolam, S., Leung, S., Cornish, J., Naot, D. and Musson, D. S. (2023) Palmitic acid reduces viability and increases production of reactive oxygen species and respiration in rat tendon-derived cells. bioRxiv doi: 10.1101/2023.02.08.527761 [Preprint].
- Krstic, J., Galhuber, M., Schulz, T. J., Schupp, M. and Prokesch, A. (2018) p53 as a dichotomous regulator of liver disease: the dose makes the medicine. Int. J. Mol. Sci. 19, 921. https://doi.org/10.3390/ijms19030921
- Kruse, J. P. and Gu, W. (2009) Modes of p53 regulation. Cell 137, 609-622. https://doi.org/10.1016/j.cell.2009.04.050
- Lacroix, M., Linares, L. K., Rueda-Rincon, N., Bloch, K., Di Michele, M., De Blasio, C., Fau, C., Gayte, L., Blanchet, E., Mairal, A., Derua, R., Cardona, F., Beuzelin, D., Annicotte, J. S., Pirot, N., Torro, A., Tinahones, F. J., Bernex, F., Bertrand-Michel, J., Langin, D., Fajas, L., Swinnen, J. and Le Cam, L. (2021) The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat. Commun. 12, 7037. https://doi.org/10.1038/s41467-021-27307-3
- Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y., Gao, B., Wierzbicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A. and Zang, M. (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376-388. https://doi.org/10.1016/j.cmet.2011.03.009
- Li, Y., Zhang, Y., Li, R., Chen, W., Howell, M., Zhang, R. and Chen, G. (2012) The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp1c expression in INS-1 cells. PLoS One 7, e45210. https://doi.org/10.1371/journal.pone.0045210
- Liu, Y. and Gu, W. (2022) The complexity of p53-mediated metabolic regulation in tumor suppression. Semin. Cancer Biol. 85, 4-32. https://doi.org/10.1016/j.semcancer.2021.03.010
- Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Ma, Y., Lee, G., Heo, S. Y. and Roh, Y. S. (2021) Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants (Basel) 11, 91. https://doi.org/10.3390/antiox11010091
- Matsui, H., Yokoyama, T., Sekiguchi, K., Iijima, D., Sunaga, H., Maniwa, M., Ueno, M., Iso, T., Arai, M. and Kurabayashi, M. (2012) Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acidinduced lipid accumulation and inhibits apoptosis in cardiac myocytes. PLoS One 7, e33283. https://doi.org/10.1371/journal.pone.0033283
- McGlinchey, A. J., Govaere, O., Geng, D., Ratziu, V., Allison, M., Bousier, J., Petta, S., de Oliviera, C., Bugianesi, E., Schattenberg, J. M., Daly, A. K., Hyotylainen, T., Anstee, Q. M. and Oresic, M. (2022) Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 4, 100477. https://doi.org/10.1016/j.jhepr.2022.100477
- Moulder, D. E., Hatoum, D., Tay, E., Lin, Y. and McGowan, E. M. (2018) The roles of p53 in mitochondrial dynamics and cancer metabolism: the pendulum between survival and death in breast cancer? Cancers (Basel) 10, 189. https://doi.org/10.3390/cancers10060189
- Namba, T., Chu, K., Kodama, R., Byun, S., Yoon, K. W., Hiraki, M., Mandinova, A. and Lee, S. W. (2015) Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway. Oncotarget 6, 19990-20001. https://doi.org/10.18632/oncotarget.4598
- Panasiuk, A., Dzieciol, J., Panasiuk, B. and Prokopowicz, D. (2006) Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease. World J. Gastroenterol. 12, 6198-6202. https://doi.org/10.3748/wjg.v12.i38.6198
- Pawlak, M., Lefebvre, P. and Staels, B. (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720-733. https://doi.org/10.1016/j.jhep.2014.10.039
- Porteiro, B., Fondevila, M. F., Buque, X., Gonzalez-Rellan, M. J., Fernandez, U., Mora, A., Beiroa, D., Senra, A., Gallego, R., Ferno, J., Lopez, M., Sabio, G., Dieguez, C., Aspichueta, P. and Nogueiras, R. (2018) Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Mol. Metab. 8, 132-143. https://doi.org/10.1016/j.molmet.2017.12.005
- Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. and Tannock, I. F. (2005) The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782-8788. https://doi.org/10.1158/1078-0432.CCR-05-1664
- Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J. and Schupp, M. (2017) Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J. 31, 732-742. https://doi.org/10.1096/fj.201600845R
- Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A. M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A. and Koromilas, A. E. (2004) Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev. 18, 261-277. https://doi.org/10.1101/gad.1165804
- Schonfeld, P. and Wojtczak, L. (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 45, 231-241. https://doi.org/10.1016/j.freeradbiomed.2008.04.029
- Sozio, M. S., Lu, C., Zeng, Y., Liangpunsakul, S. and Crabb, D. W. (2011) Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G739-G747. https://doi.org/10.1152/ajpgi.00432.2010
- Tang, C. H., Ranatunga, S., Kriss, C. L., Cubitt, C. L., Tao, J., PinillaIbarz, J. A., Del Valle, J. R. and Hu, C. C. (2014) Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J. Clin. Invest. 124, 2585-2598. https://doi.org/10.1172/JCI73448
- Tsang, W. P., Chau, S. P., Kong, S. K., Fung, K. P. and Kwok, T. T. (2003) Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 73, 2047-2058. https://doi.org/10.1016/S0024-3205(03)00566-6
- Tsuru, A., Imai, Y., Saito, M. and Kohno, K. (2016) Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep. 6, 24217. https://doi.org/10.1038/srep24217
- Vousden, K. H. and Ryan, K. M. (2009) p53 and metabolism. Nat. Rev. Cancer 9, 691-700. https://doi.org/10.1038/nrc2715
- Wang, M. and Kaufman, R. J. (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581-597. https://doi.org/10.1038/nrc3800
- Wen, S. Y., Ali, A., Huang, I. C., Liu, J. S., Chen, P. Y., Padma Viswanadha, V., Huang, C. Y. and Kuo, W. W. (2023) Doxorubicin induced ROS-dependent HIF1α activation mediates blockage of IGF1R survival signaling by IGFBP3 promotes cardiac apoptosis. Aging (Albany N.Y.) 15, 164-178. https://doi.org/10.18632/aging.204466
- Winder, W. W. and Hardie, D. G. (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299-E304. https://doi.org/10.1152/ajpendo.1996.270.2.E299
- Yahagi, N., Shimano, H., Matsuzaka, T., Najima, Y., Sekiya, M., Nakagawa, Y., Ide, T., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Gotoda, T., Nagai, R., Kimura, S., Ishibashi, S., Osuga, J. and Yamada, N. (2003) p53 Activation in adipocytes of obese mice. J. Biol. Chem. 278, 25395-25400. https://doi.org/10.1074/jbc.M302364200
- Yahagi, N., Shimano, H., Matsuzaka, T., Sekiya, M., Najima, Y., Okazaki, S., Okazaki, H., Tamura, Y., Iizuka, Y., Inoue, N., Nakagawa, Y., Takeuchi, Y., Ohashi, K., Harada, K., Gotoda, T., Nagai, R., Kadowaki, T., Ishibashi, S., Osuga, J. I. and Yamada, N. (2004) p53 involvement in the pathogenesis of fatty liver disease. J. Biol. Chem. 279, 20571-20575. https://doi.org/10.1074/jbc.M400884200
- Yang, W., Zhao, J., Zhao, Y., Li, W., Zhao, L., Ren, Y., Ou, R. and Xu, Y. (2020) Hsa_circ_0048179 attenuates free fatty acid-induced steatosis via hsa_circ_0048179/miR-188-3p/GPX4 signaling. Aging (Albany N.Y.) 12, 23996-24008. https://doi.org/10.18632/aging.104081
- Yoshihara, T., Maruyama, R., Shiozaki, S., Yamamoto, K., Kato, S. I., Nakamura, Y. and Tobita, S. (2020) Visualization of lipid droplets in living cells and fatty livers of mice based on the fluorescence of π-extended coumarin using fluorescence lifetime imaging microscopy. Anal. Chem. 92, 4996-5003. https://doi.org/10.1021/acs.analchem.9b05184
- Yun, C., Lee, J. H., Park, H., Jin, Y. M., Park, S., Park, K. and Cho, H. (2000) Chemotherapeutic drug, adriamycin, restores the function of p53 protein in hepatitis B virus X (HBx) protein-expressing liver cells. Oncogene 19, 5163-5172. https://doi.org/10.1038/sj.onc.1203896
- Zhang, X., Lin, Y., Lin, S., Li, C., Gao, J., Feng, Z., Wang, J., Zhang, J., Zhang, H., Zhang, Y., Chen, X., Chen, S., Xu, C., Li, Y., Yu, C. and Zeng, H. (2020) Silencing of functional p53 attenuates NAFLD by promoting HMGB1-related autophagy induction. Hepatol. Int. 14, 828-841. https://doi.org/10.1007/s12072-020-10068-4
- Zhao, J., Zhou, X., Chen, B., Lu, M., Wang, G., Elumalai, N., Tian, C., Zhang, J., Liu, Y., Chen, Z., Zhou, X., Wu, M., Li, M., Prochownik, E. V., Tavassoli, A., Jiang, C. and Li, Y. (2023) p53 promotes peroxisomal fatty acid β-oxidation to repress purine biosynthesis and mediate tumor suppression. Cell Death Dis. 14, 87. https://doi.org/10.1038/s41419-023-05625-2