DOI QR코드

DOI QR Code

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Pattage Madushan Dilhara Jayatissa Fernando (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Kyoung Ah Kang (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Pincha Devage Sameera Madushan Fernando (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Herath Mudiyanselage Udari Lakmini Herath (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Young Ree Kim (Department of Laboratory Medicine, Jeju National University Hospital, and College of Medicine, Jeju National University) ;
  • Jin Won Hyun (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University)
  • Received : 2023.10.13
  • Accepted : 2023.11.16
  • Published : 2024.01.01

Abstract

Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00270936). This work was supported by a research grant from Jeju National University Hospital in 2023.

References

  1. Amoah, S. K., Sandjo, L. P., Kratz, J. M. and Biavatti, M. W. (2016) Rosmarinic acid--pharmaceutical and clinical aspects. Planta Med. 82, 388-406. https://doi.org/10.1055/s-0035-1568274
  2. Asare, O., Ayala, Y., Hafeez, B. B., Ramirez-Correa, G. A., Cho, Y. Y. and Kim, D. J. (2023) Ultraviolet radiation exposure and its impacts on cutaneous phosphorylation signaling in carcinogenesis: focusing on protein tyrosine phosphatases. Photochem. Photobiol. 99, 344-355. https://doi.org/10.1111/php.13703
  3. Ashrafizadeh, M., Ahmadi, Z., Mohammadinejad, R., Farkhondeh, T. and Samarghandian, S. (2020) Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr. Mol. Med. 20, 116-133.
  4. Azmanova, M. and Pitto-Barry, A. (2022) Oxidative stress in cancer therapy: friend or enemy? Chembiochem. 23, e202100641. https://doi.org/10.1002/cbic.202100641
  5. Chen, J., Zeng, F., Forrester, S. J., Eguchi, S., Zhang, M. Z. and Harris, R. C. (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol. Rev. 96, 1025-1069. https://doi.org/10.1152/physrev.00030.2015
  6. Farkhondeh, T., Folgado, S. L., Pourbagher-Shahri, A. M., Ashrafizadeh, M. and Samarghandian, S. (2020) The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother. 127, 110234. https://doi.org/10.1016/j.biopha.2020.110234
  7. Fernando, P. M., Piao, M. J., Kang, K. A., Ryu, Y. S., Hewage, S. R., Chae, S. W. and Hyun, J. W. (2016) Rosmarinic acid attenuates cell damage against UVB radiation-induced oxidative stress via enhancing antioxidant effects in human HaCaT cells. Biomol. Ther. (Seoul) 24, 75-84. https://doi.org/10.4062/biomolther.2015.069
  8. G Bardallo, R., Panisello-Rosello, A., Sanchez-Nuno, S., Alva, N., Rosello-Catafau, J. and Carbonell, T. (2022) Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 289, 5463-5479. https://doi.org/10.1111/febs.16336
  9. Galicia-Moreno, M., Lucano-Landeros, S., Monroy-Ramirez, H. C., Silva-Gomez, J., Gutierrez-Cuevas, J., Santos, A. and Armendariz-Borunda, J. (2020) Roles of Nrf2 in liver diseases: molecular, pharmacological, and epigenetic aspects. Antioxidants 9, 980. https://doi.org/10.3390/antiox9100980
  10. Gomes, K. K., Dos Santos, A. B., Dos Anjos, J. S., Leandro, L. P., Mariano, M. T., Pinheiro, F. L., Farina, M., Franco, J. L. and Posser, T. (2023) Increased iron levels and oxidative stress mediate age-related impairments in male and female Drosophila melanogaster. Oxid. Med. Cell. Longev. 2023, 7222462.
  11. Gonchar, O. O., Maznychenko, A. V., Klyuchko, O. M., Mankovska, I. M., Butowska, K., Borowik, A., Piosik, J. and Sokolowska, I. (2021) C60 fullerene reduces 3-nitropropionic acid-induced oxidative stress disorders and mitochondrial dysfunction in rats by modulation of p53, Bcl-2 and Nrf2 targeted proteins. Int. J. Mol. Sci. 22, 5444. https://doi.org/10.3390/ijms22115444
  12. He, F., Ru, X. and Wen, T. (2020) NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 21, 4777. https://doi.org/10.3390/ijms21134777
  13. Ijaz, S., Iqbal, J., Abbasi, B. A., Ullah, Z., Yaseen, T., Kanwal, S., Mahmood, T., Sydykbayeva, S., Ydyrys, A., Almarhoon, Z. M., SharifiRad, J., Hano, C., Calina, D. and Cho, W. C. (2023) Rosmarinic acid and its derivatives: current insights on anticancer potential and other biomedical applications. Biomed. Pharmacother. 162, 114687. https://doi.org/10.1016/j.biopha.2023.114687
  14. Jena, A. B., Samal, R. R., Bhol, N. K. and Duttaroy, A. K. (2023) Cellular Red-Ox system in health and disease: the latest update. Biomed. Pharmacother. 162, 114606. https://doi.org/10.1016/j.biopha.2023.114606
  15. Kumar, K. J. S., Vani, M. G. and Wang, S. Y. (2022) Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. Environ. Toxicol. 37, 2897-2909. https://doi.org/10.1002/tox.23646
  16. Lapenna, D. (2023) Glutathione and glutathione-dependent enzymes: from biochemistry to gerontology and successful aging. Ageing Res. Rev. 92, 102066. https://doi.org/10.1016/j.arr.2023.102066
  17. Li, G. S., Jiang, W. L., Tian, J. W., Qu, G. W., Zhu, H. B. and Fu, F. H. (2010) In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 17, 282-288. https://doi.org/10.1016/j.phymed.2009.05.002
  18. Li, P. F., Xiang, Y. G., Zhang, D., Lu, N., Dou, Q. and Tan, L. (2021) Downregulation of DNA ligases in trophoblasts contributes to recurrent pregnancy loss through inducing DNA damages. Placenta 106, 7-14. https://doi.org/10.1016/j.placenta.2021.02.001
  19. Liu, T., Lv, Y. F., Zhao, J. L., You, Q. D. and Jiang, Z. Y. (2021) Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radic. Biol. Med. 168, 129-141. https://doi.org/10.1016/j.freeradbiomed.2021.03.034
  20. Liu, T., Sun, L., Zhang, Y., Wang, Y. and Zheng, J. (2022a) Imbalanced GSH/ROS and sequential cell death. J. Biochem. Mol. Toxicol. 36, e22942. https://doi.org/10.1002/jbt.22942
  21. Liu, Y., Liu, Y., Deng, J., Wu, X., He, W., Mu, X. and Nie, X. (2022b) Molecular mechanisms of marine-derived natural compounds as photoprotective strategies. Int. Immunopharmacol. 111, 109174. https://doi.org/10.1016/j.intimp.2022.109174
  22. McDaniel, D., Farris, P. and Valacchi, G. (2018) Atmospheric skin aging-contributors and inhibitors. J. Cosmet. Dermatol. 17, 124-137. https://doi.org/10.1111/jocd.12518
  23. Mohamed, S. A. and Hargest, R. (2022) Surgical anatomy of the skin. Surgery 40, 1-7.
  24. Nie, Y., Chu, C., Qin, Q., Shen, H., Wen, L., Tang, Y. and Qu, M. (2023) Lipid metabolism and oxidative stress in patients with Alzheimer's disease and amnestic mild cognitive impairment. Brain Pathol. doi: 10.1111/bpa.13202 [Online ahead of print].
  25. Noor, S., Mohammad, T., Rub, M. A., Raza, A., Azum, N., Yadav, D. K., Hassan, M. I. and Asiri, A. M. (2022) Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharm. Res. 45, 205-228. https://doi.org/10.1007/s12272-022-01378-2
  26. Pantelic, M. N., Wong, N., Kwa, M. and Lim, H. W. (2023) Ultraviolet filters in the United States and European Union: a review of safety and implications for the future of US sunscreens. J. Am. Acad. Dermatol. 88, 632-646. https://doi.org/10.1016/j.jaad.2022.11.039
  27. Papaccio, F., D'Arino, A., Caputo, S. and Bellei, B. (2022) Focus on the contribution of oxidative stress in skin aging. Antioxidants 11, 1121. https://doi.org/10.3390/antiox11061121
  28. Piao, M. J., Ahn, M. J., Kang, K. A., Kim, K. C., Cha, J. W., Lee, N. H. and Hyun, J. W. (2015) Phloroglucinol enhances the repair of UVB radiation-induced DNA damage via promotion of the nucleotide excision repair system in vitro and in vivo. DNA Repair 28, 131-138. https://doi.org/10.1016/j.dnarep.2015.02.019
  29. Qin, S. and Hou, D. X. (2016) Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol. Nutr. Food Res. 60, 1731-1755. https://doi.org/10.1002/mnfr.201501017
  30. Rocha, J., Eduardo-Figueira, M., Barateiro, A., Fernandes, A., Brites, D., Bronze, R., Duarte, C. M., Serra, A. T., Pinto, R., Freitas, M., Fernandes, E., Silva-Lima, B., Mota-Filipe, H. and Sepodes, B. (2015) Anti-inflammatory effect of rosmarinic acid and an extract of rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol. 116, 398-413. https://doi.org/10.1111/bcpt.12335
  31. Vetrani, C., Piscitelli, P., Muscogiuri, G., Barrea, L., Laudisio, D., Graziadio, C., Marino, F. and Colao, A. (2022) Planeterranea: an attempt to broaden the beneficial effects of the Mediterranean diet worldwide. Front. Nutr. 9, 973757. https://doi.org/10.3389/fnut.2022.973757
  32. Wang, J., Deng, H., Zhang, J., Wu, D., Li, J., Ma, J. and Dong, W. (2020) α-Hederin induces the apoptosis of gastric cancer cells accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway. Phytother. Res. 34, 601-611. https://doi.org/10.1002/ptr.6548
  33. Wang, R., Liang, L., Matsumoto, M., Iwata, K., Umemura, A. and He, F. (2023) Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules 13, 353. https://doi.org/10.3390/biom13020353
  34. Wei, J., Zhao, Q., Zhang, Y., Shi, W., Wang, H., Zheng, Z., Meng, L., Xin, Y. and Jiang, X. (2021) Sulforaphane-mediated Nrf2 activation prevents radiation-induced skin injury through inhibiting the oxidative-stress-activated DNA damage and NLRP3 inflammasome. Antioxidants 10, 1850. https://doi.org/10.3390/antiox10111850