Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (KRF-2020R1I1A3062151); Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1076).
References
- Adachi, M., Fukuda, M. and Nishida, E. (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849-856. https://doi.org/10.1083/jcb.148.5.849
- Ahn, S., Shenoy, S. K., Wei, H. and Lefkowitz, R. J. (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518-35525. https://doi.org/10.1074/jbc.M405878200
- Alvarez-Curto, E., Inoue, A., Jenkins, L., Raihan, S. Z., Prihandoko, R., Tobin, A. B. and Milligan, G. (2016) Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J. Biol. Chem. 291, 27147-27159. https://doi.org/10.1074/jbc.M116.754887
- Benovic, J. L., Kuhn, H., Weyand, I., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. U. S. A. 84, 8879-8882. https://doi.org/10.1073/pnas.84.24.8879
- Beom, S., Cheong, D., Torres, G., Caron, M. G. and Kim, K. M. (2004) Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J. Biol. Chem. 279, 28304-28314. https://doi.org/10.1074/jbc.M403899200
- Bonifazi, A., Yano, H., Guerrero, A. M., Kumar, V., Hoffman, A. F., Lupica, C. R., Shi, L. and Newman, A. H. (2019) Novel and potent dopamine D(2) receptor Go-protein biased agonists. ACS Pharmacol. Transl. Sci. 2, 52-65. https://doi.org/10.1021/acsptsci.8b00060
- Burns, D. L. (1988) Subunit structure and enzymic activity of pertussis toxin. Microbiol. Sci. 5, 285-287.
- Chen, X., Mccorvy, J. D., Fischer, M. G., Butler, K. V., Shen, Y., Roth, B. L. and Jin, J. (2016) Discovery of G protein-biased D2 dopamine receptor partial agonists. J. Med. Chem. 59, 10601-10618. https://doi.org/10.1021/acs.jmedchem.6b01208
- Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
- Davis, S., Vanhoutte, P., Pages, C., Caboche, J. and Laroche, S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiationdependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563-4572. https://doi.org/10.1523/JNEUROSCI.20-12-04563.2000
- Donthamsetti, P., Gallo, E. F., Buck, D. C., Stahl, E. L., Zhu, Y., Lane, J. R., Bohn, L. M., Neve, K. A., Kellendonk, C. and Javitch, J. A. (2020) Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol. Psychiatry 25, 2086-2100. https://doi.org/10.1038/s41380-018-0212-4
- Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L. and Caron, M. G. (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363-366. https://doi.org/10.1126/science.271.5247.363
- Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P., Simon, K., Ruttiger, N., Ziegler, N., Benkel, T., Schmitt, N. K., Ishida, S., Muller, I., Reher, R., Kawakami, K., Inoue, A., Rick, U., Kuhl, T., Imhof, D., Aoki, J., Konig, G. M., Hoffmann, C., Gomeza, J., Wess, J. and Kostenis, E. (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341.
- Gurevich, V. V. and Gurevich, E. V. (2020) Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol. Ther. 211, 107540.
- Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
- Kim, M. L., Sorg, I. and Arrieumerlou, C. (2011) Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kappaB activation. PLoS One 6, e17158.
- Lan, H., Liu, Y., Bell, M. I., Gurevich, V. V. and Neve, K. A. (2009) A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol. Pharmacol. 75, 113-123. https://doi.org/10.1124/mol.108.050534
- Lichtarge, O., Bourne, H. R. and Cohen, F. E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342-358. https://doi.org/10.1006/jmbi.1996.0167
- Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
- Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G. and Lefkowitz, R. J. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655-661. https://doi.org/10.1126/science.283.5402.655
- Maik-Rachline, G., Hacohen-Lev-Ran, A. and Seger, R. (2019) Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci. 20, 1194.
- Mccorvy, J. D., Butler, K. V., Kelly, B., Rechsteiner, K., Karpiak, J., Betz, R. M., Kormos, B. L., Shoichet, B. K., Dror, R. O., Jin, J. and Roth, B. L. (2018) Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 14, 126-134. https://doi.org/10.1038/nchembio.2527
- Min, X., Sun, N., Wang, S., Zhang, X. and Kim, K. M. (2023) Sequestration of Gbetagamma by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein-coupled receptors. Cell Commun. Signal. 21, 11.
- Min, X., Zhang, X., Sun, N., Acharya, S. and Kim, K. M. (2019) Mdm2-mediated ubiquitination of PKCbetaII in the nucleus mediates clathrin-mediated endocytic activity. Biochem. Pharmacol. 170, 113675.
- Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. and Barak, L. S. (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201-17210. https://doi.org/10.1074/jbc.M910348199
- Peterson, S. M., Pack, T. F. and Caron, M. G. (2015a) Receptor, ligand and transducer contributions to dopamine D2 receptor functional selectivity. PLoS One 10, e0141637.
- Peterson, S. M., Pack, T. F., Wilkins, A. D., Urs, N. M., Urban, D. J., Bass, C. E., Lichtarge, O. and Caron, M. G. (2015b) Elucidation of G-protein and beta-arrestin functional selectivity at the dopamine D2 receptor. Proc. Natl. Acad. Sci. U. S. A. 112, 7097-7102. https://doi.org/10.1073/pnas.1502742112
- Quan, W., Kim, J. H., Albert, P. R., Choi, H. and Kim, K. M. (2008) Roles of G protein and beta-arrestin in dopamine D2 receptor-mediated ERK activation. Biochem. Biophys. Res. Commun. 377, 705-709. https://doi.org/10.1016/j.bbrc.2008.10.044
- Reiter, E., Ahn, S., Shukla, A. K. and Lefkowitz, R. J. (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179-197. https://doi.org/10.1146/annurev.pharmtox.010909.105800
- Sanchez-Soto, M., Verma, R. K., Willette, B. K. A., Gonye, E. C., Moore, A. M., Moritz, A. E., Boateng, C. A., Yano, H., Free, R. B., Shi, L. and Sibley, D. R. (2020) A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci. Signal. 13, eaaw5885.
- Shenoy, S. K., Barak, L. S., Xiao, K., Ahn, S., Berthouze, M., Shukla, A. K., Luttrell, L. M. and Lefkowitz, R. J. (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J. Biol. Chem. 282, 29549-29562. https://doi.org/10.1074/jbc.M700852200
- Shenoy, S. K., Mcdonald, P. H., Kohout, T. A. and Lefkowitz, R. J. (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294, 1307-1313. https://doi.org/10.1126/science.1063866
- Soergel, D. G., Subach, R. A., Burnham, N., Lark, M. W., James, I. E., Sadler, B. M., Skobieranda, F., Violin, J. D. and Webster, L. R. (2014) Biased agonism of the mu-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155, 1829-1835. https://doi.org/10.1016/j.pain.2014.06.011
- Tohgo, A., Choy, E. W., Gesty-Palmer, D., Pierce, K. L., Laporte, S., Oakley, R. H., Caron, M. G., Lefkowitz, R. J. and Luttrell, L. M. (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258-6267. https://doi.org/10.1074/jbc.M212231200
- Tohgo, A., Pierce, K. L., Choy, E. W., Lefkowitz, R. J. and Luttrell, L. M. (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429-9436. https://doi.org/10.1074/jbc.M106457200
- Urban, J. D., Clarke, W. P., Von Zastrow, M., Nichols, D. E., Kobilka, B., Weinstein, H., Javitch, J. A., Roth, B. L., Christopoulos, A., Sexton, P. M., Miller, K. J., Spedding, M. and Mailman, R. B. (2007) Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1-13. https://doi.org/10.1124/jpet.106.104463
- Violin, J. D., Crombie, A. L., Soergel, D. G. and Lark, M. W. (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308-316. https://doi.org/10.1016/j.tips.2014.04.007
- Violin, J. D., Dewire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M. and Lark, M. W. (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572-579. https://doi.org/10.1124/jpet.110.173005
- Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M. and Lefkowitz, R. J. (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U. S. A. 100, 10782-10787. https://doi.org/10.1073/pnas.1834556100
- Wisler, J. W., Rockman, H. A. and Lefkowitz, R. J. (2018) Biased G protein-coupled receptor signaling: changing the paradigm of drug discovery. Circulation 137, 2315-2317. https://doi.org/10.1161/CIRCULATIONAHA.117.028194
- Wortzel, I. and Seger, R. (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195-209. https://doi.org/10.1177/1947601911407328
- Zhang, X., Min, X., Wang, S., Sun, N. and Kim, K. M. (2020) Mdm2-mediated ubiquitination of beta-arrestin2 in the nucleus occurs in a Gbetagamma- and clathrin-dependent manner. Biochem. Pharmacol. 178, 114049.
- Zhang, X., Wang, F., Chen, X., Li, J., Xiang, B., Zhang, Y. Q., Li, B. M. and Ma, L. (2005) Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J. Neurochem. 95, 169-178. https://doi.org/10.1111/j.1471-4159.2005.03352.x
- Zheng, M., Cheong, S. Y., Min, C., Jin, M., Cho, D. I. and Kim, K. M. (2011) beta-arrestin2 plays permissive roles in the inhibitory activities of RGS9-2 on G protein-coupled receptors by maintaining RGS9-2 in the open conformation. Mol. Cell. Biol. 31, 4887-4901. https://doi.org/10.1128/MCB.05690-11