DOI QR코드

DOI QR Code

Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives

  • Fazila Sirajudeen (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Lara J. Bou Malhab (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Yasser Bustanji (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Moyad Shahwan (Centre of Medical and Bio-allied Health Sciences Research, Ajman University) ;
  • Karem H. Alzoubi (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Mohammad H. Semreen (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Jalal Taneera (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Waseem El-Huneidi (Research Institute for Medical and Health Sciences, University of Sharjah) ;
  • Eman Abu-Gharbieh (Research Institute for Medical and Health Sciences, University of Sharjah)
  • Received : 2023.03.13
  • Accepted : 2023.06.26
  • Published : 2024.01.01

Abstract

Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.

Keywords

Acknowledgement

The research was supported by a grant from the College of Research and Graduate Studies at the University of Sharjah (No.2001090185) and grant (No.2001090271).

References

  1. Abbas, G. and Krasna, M. (2017) Overview of esophageal cancer. Ann. cardiothorac. Surg. 6, 131-136. https://doi.org/10.21037/acs.2017.03.03
  2. An, Y., Zhao, J., Zhang, Y., Wu, W., Hu, J., Hao, H., Qiao, Y., Tao, Y. and An, L. (2021) Rosmarinic acid induces proliferation suppression of hepatoma cells associated with NF-κB signaling pathway. Asian Pac. J. Cancer Prev. 22, 1623-1631. https://doi.org/10.31557/APJCP.2021.22.5.1623
  3. Balendiran, G. K., Dabur, R. and Fraser, D. (2004) The role of glutathione in cancer. Cell Biochem. Funct. 22, 343-352. https://doi.org/10.1002/cbf.1149
  4. Bhutia, S. K., Mukhopadhyay, S., Sinha, N., Das, D. N., Panda, P. K., Patra, S. K., Maiti, T. K., Mandal, M., Dent, P., Wang, X. Y., Das, S. K., Sarkar, D. and Fisher, P. B. (2013) Autophagy: cancer's friend or foe? Adv. Cancer Res. 118, 61-95. https://doi.org/10.1016/B978-0-12-407173-5.00003-0
  5. Birtic, S., Dussort, P., Pierre, F.-X., Bily, A. C. and Roller, M. (2015) Carnosic acid. Phytochemistry 115, 9-19. https://doi.org/10.1016/j.phytochem.2014.12.026
  6. Borras-Linares, I., Perez-Sanchez, A., Lozano-Sanchez, J., Barrajon-Catalan, E., Arraez-Roman, D., Cifuentes, A., Micol, V. and Carretero, A. S. (2015) A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem. Toxicol. 80, 215-222. https://doi.org/10.1016/j.fct.2015.03.013
  7. Bulgakov, V. P., Inyushkina, Y. V. and Fedoreyev, S. A. (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit. Rev. Biotechnol. 32, 203-217. https://doi.org/10.3109/07388551.2011.596804
  8. Cao, W., Hu, C., Wu, L., Xu, L. and Jiang, W. (2016) Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J. Pharmacol. Sci. 132, 131-137. https://doi.org/10.1016/j.jphs.2016.09.003
  9. Chaitanya, M. V. N. L., Ramanunny, A. K., Babu, M. R., Gulati, M., Vishwas, S., Singh, T. G., Chellappan, D. K., Adams, J., Dua, K. and Singh, S. K. (2022) Journey of rosmarinic acid as biomedicine to nano-biomedicine for treating cancer: current strategies and future perspectives. Pharmaceutics 14, 2401. https://doi.org/10.3390/pharmaceutics14112401
  10. Chen, X., Huang, M., Liu, D., Li, Y., Luo, Q., Pham, K., Wang, M., Zhang, J., Zhang, R., Peng, Z. and Wu, X. (2021) Absorption and transport characteristics and mechanisms of carnosic acid. Biology 10, 1278. https://doi.org/10.3390/biology10121278
  11. Choi, S.-K., Kam, H., Kim, K.-Y., Park, S. I. and Lee, Y.-S. (2019) Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers (Basel) 11, 1195. https://doi.org/10.3390/cancers11081195
  12. Chou, S.-T., Ho, B.-Y., Tai, Y.-T., Huang, C.-J. and Chao, W.-W. (2020) Bidirect effects from cisplatin combine with rosmarinic acid (RA) or hot water extracts of Glechoma hederacea (HWG) on renal cancer cells. Chin. Med. 15, 77. https://doi.org/10.1186/s13020-020-00358-2
  13. Cortese, K., Daga, A., Monticone, M., Tavella, S., Stefanelli, A., Aiello, C., Bisio, A., Bellese, G. and Castagnola, P. (2016) Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine 23, 679-685. https://doi.org/10.1016/j.phymed.2016.03.007
  14. Corveloni, A. C., Semprebon, S. C., Baranoski, A., Biazi, B. I., Zanetti, T. A. and Mantovani, M. S. (2020) Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells. J. Toxicol. Environ. Health A 83, 412-421.
  15. D'Alesio, C., Bellese, G., Gagliani, M. C., Aiello, C., Grasselli, E., Marcocci, G., Bisio, A., Tavella, S., Daniele, T., Cortese, K. and Castagnola, P. (2017) Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J. Exp. Clin. Cancer Res. 36, 154. https://doi.org/10.1186/s13046-017-0615-0
  16. Davis, A., Viera, A. J. and Mead, M. D. (2014) Leukemia: an overview for primary care. Am. Fam. Physician 89, 731-738.
  17. Davis, M. E. (2016) Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, S2-S8. https://doi.org/10.1188/16.CJON.S1.2-8
  18. de Oliveira, M. R., da Costa Ferreira, G., Peres, A. and Bosco, S. M. D. (2018) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SHSY5Y cells: role for Nrf2. Mol. Neurobiol. 55, 968-979. https://doi.org/10.1007/s12035-016-0372-7
  19. de Oliveira, M. R., Ferreira, G. C. and Schuck, P. F. (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol. In Vitro 32, 41-54. https://doi.org/10.1016/j.tiv.2015.12.005
  20. de Oliveira, M. R., Ferreira, G. C., Schuck, P. F. and Dal Bosco, S. M. (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem. Biol. Interact. 242, 396-406. https://doi.org/10.1016/j.cbi.2015.11.003
  21. de Oliveira, M. R., Peres, A., Ferreira, G. C., Schuck, P. F., Gama, C. S. and Bosco, S. M. D. (2017) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol. Neurobiol. 54, 5961-5972. https://doi.org/10.1007/s12035-016-0100-3
  22. Dominguez-Avila, J. A., Wall-Medrano, A., Velderrain-Rodriguez, G. R., Chen, C. Y. O., Salazar-Lopez, N. J., Robles-Sanchez, M. and Gonzalez-Aguilar, G. A. (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 8, 15-38. https://doi.org/10.1039/C6FO01475E
  23. Dong, Y., Shi, O., Zeng, Q., Lu, X., Wang, W., Li, Y. and Wang, Q. (2020) Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 9, 14. https://doi.org/10.1186/s40164-020-00170-6
  24. Doolaege, E. H. A., Raes, K., De Vos, F., Verhe, R. and De Smet, S. (2011) Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum. Nutr. 66, 196-202. https://doi.org/10.1007/s11130-011-0233-5
  25. Dusterhoft, S., Lokau, J. and Garbers, C. (2019) The metalloprotease ADAM17 in inflammation and cancer. Pathol. Res. Pract. 215, 152410. https://doi.org/10.1016/j.prp.2019.04.002
  26. El-Huneidi, W., Anjum, S., Saleh, M. A., Bustanji, Y., Abu-Gharbieh, E. and Taneera, J. (2022) Carnosic acid protects INS-1 beta-cells against streptozotocin-induced damage by inhibiting apoptosis and improving insulin secretion and glucose uptake. Molecules 27, 2102. https://doi.org/10.3390/molecules27072102
  27. El-Huneidi, W., Bajbouj, K., Muhammad, J. S., Vinod, A., Shafarin, J., Khoder, G., Saleh, M. A., Taneera, J. and Abu-Gharbieh, E. (2021) Carnosic acid induces apoptosis and inhibits Akt/mTOR signaling in human gastric cancer cell lines. Pharmaceuticals (Basel) 14, 230. https://doi.org/10.3390/ph14030230
  28. El-Huneidi, W., Shehab, N. G., Bajbouj, K., Vinod, A., El-Serafi, A., Shafarin, J., Bou Malhab, L. J., Abdel-Rahman, W. M. and AbuGharbieh, E. (2020) Micromeria fruticosa induces cell cycle arrest and apoptosis in breast and colorectal cancer cells. Pharmaceuticals (Basel) 13, 115. https://doi.org/10.3390/ph13060115
  29. Furtado, R. A., Oliveira, B. R., Silva, L. R., Cleto, S. S., Munari, C. C., Cunha, W. R. and Tavares, D. C. (2015) Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. Eur. J. Cancer Prev. 24, 106-112. https://doi.org/10.1097/CEJ.0000000000000055
  30. Gao, Q., Liu, H., Yao, Y., Geng, L., Zhang, X., Jiang, L., Shi, B. and Yang, F. (2015) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 35, 485-492. https://doi.org/10.1002/jat.3049
  31. Gonzalez-Vallinas, M., Molina, S., Vicente, G., Zarza, V., Martin-Hernandez, R., Garcia-Risco, M. R., Fornari, T., Reglero, G. and De Molina, A. R. (2014) Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS One 9, e98556. https://doi.org/10.1371/journal.pone.0098556
  32. Gonzalez-Vallinas, M., Vargas, T., Moreno-Rubio, J., Molina, S., Herranz, J., Cejas, P., Burgos, E., Aguayo, C., Custodio, A. and Reglero, G. (2015) Clinical relevance of the differential expression of the glycosyltransferase gene GCNT3 in colon cancer. Eur. J. Cancer 51, 1-8. https://doi.org/10.1016/j.ejca.2014.10.021
  33. Guerriero, I., Ramberg, H., Sagini, K., Ramirez-Garrastacho, M., Tasken, K. A. and Llorente, A. (2021) Implication of β2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells. PLoS One 16, e0253828. https://doi.org/10.1371/journal.pone.0253828
  34. Guo, S.-B., Xu, L.-L., Jiang, L.-J., Wang, F., Wang, Z.-J., Zhang, J.-Y. and Liu, B. (2019) Profiling and identification of in vivo metabolism of rosmarinic acid in rats. Zhongguo Zhong Yao Za Zhi 44, 4704-4712.
  35. Han, L., Li, L. and Wu, G. (2022) Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells. Mol. Cell. Probes 64, 101821. https://doi.org/10.1016/j.mcp.2022.101821
  36. Han, N.-n., Zhou, Q., Huang, Q. and Liu, K.-J. (2017) Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed. Pharmacother. 89, 827-837. https://doi.org/10.1016/j.biopha.2017.01.084
  37. Han, S., Yang, S., Cai, Z., Pan, D., Li, Z., Huang, Z., Zhang, P., Zhu, H., Lei, L. and Wang, W. (2015) Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Devel. Ther. 9, 2695-2703.
  38. Han, Y.-H., Kee, J.-Y. and Hong, S.-H. (2018) Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 9, 68. https://doi.org/10.3389/fphar.2018.00068
  39. Han, Y., Ma, L., Zhao, L., Feng, W. and Zheng, X. (2019) Rosmarinic inhibits cell proliferation, invasion and migration via up-regulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomed. Pharmacother. 115, 108878. https://doi.org/10.1016/j.biopha.2019.108878
  40. Hasei, S., Yamamotoya, T., Nakatsu, Y., Ohata, Y., Itoga, S., Nonaka, Y., Matsunaga, Y., Sakoda, H., Fujishiro, M. and Kushiyama, A. (2021) Carnosic acid and carnosol activate AMPK, suppress expressions of gluconeogenic and lipogenic genes, and inhibit proliferation of HepG2 cells. Int. J. Mol. Sci. 22, 4040. https://doi.org/10.3390/ijms22084040
  41. Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. and Mortezaee, K. (2019) Cyclooxygenase-2 in cancer: a review. J. Cell. Physiol. 234, 5683-5699. https://doi.org/10.1002/jcp.27411
  42. Heo, S.-K., Noh, E.-K., Yoon, D.-J., Jo, J.-C., Koh, S., Baek, J. H., Park, J.-H., Min, Y. J. and Kim, H. (2015) Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur. J. Pharmacol. 747, 36-44. https://doi.org/10.1016/j.ejphar.2014.10.064
  43. Huang, L., Chen, J., Quan, J. and Xiang, D. (2021) Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 12, 3065-3076. https://doi.org/10.1080/21655979.2021.1941699
  44. Jain, S., Dwivedi, J., Jain, P. K., Satpathy, S. and Patra, A. (2016) Medicinal plants for treatment of cancer: a brief review. Pharmacogn. J. 8, 87-102. https://doi.org/10.5530/pj.2016.2.1
  45. Jaiswal, P. K., Goel, A. and Mittal, R. (2015) Survivin: a molecular biomarker in cancer. Indian J. Med. Res. 141, 389-397. https://doi.org/10.4103/0971-5916.159250
  46. Jang, Y.-G., Hwang, K.-A. and Choi, K.-C. (2018) Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients 10, 1784. https://doi.org/10.3390/nu10111784
  47. Jiang, S., Qiu, Y., Wang, Z., Ji, Y., Zhang, X., Yan, X. and Zhan, Z. (2021) Carnosic acid induces antiproliferation and anti-metastatic property of esophageal cancer cells via MAPK signaling pathways. J. Oncol. 2021, 4451533. https://doi.org/10.1155/2021/4451533
  48. Jin, B.-R., Chung, K.-S., Hwang, S., Hwang, S. N., Rhee, K.-J., Lee, M. and An, H.-J. (2021) Rosmarinic acid represses colitis-associated colon cancer: a pivotal involvement of the TLR4-mediated NF-κB-STAT3 axis. Neoplasia 23, 561-573. https://doi.org/10.1016/j.neo.2021.05.002
  49. Jin, B., Liu, J., Gao, D., Xu, Y., He, L., Zang, Y., Li, N. and Lin, D. (2020) Detailed studies on the anticancer action of rosmarinic acid in human Hep-G2 liver carcinoma cells: evaluating its effects on cellular apoptosis, caspase activation and suppression of cell migration and invasion. J. BUON. 25, 1383-1389.
  50. Jung, K.-J., Min, K.-j., Bae, J. H. and Kwon, T. K. (2015) Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget 6, 1556. https://doi.org/10.18632/oncotarget.2727
  51. Juskowiak, B., Bogacz, A., Wolek, M., Kaminski, A., Uzar, I., Seremak-Mrozikiewicz, A. and Czerny, B. (2018) Expression profiling of genes modulated by rosmarinic acid (RA) in MCF-7 breast cancer cells. Ginekol. Pol. 89, 541-545. https://doi.org/10.5603/GP.a2018.0092
  52. Jyotsana, N., Ta, K. and DelGiorno, K. (2022) The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front. Oncol. 12, 858462. https://doi.org/10.3389/fonc.2022.858462
  53. Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
  54. Khella, K. F., Abd El Maksoud, A. I., Hassan, A., Abdel-Ghany, S. E., Elsanhoty, R. M., Aladhadh, M. A. and Abdel-Hakeem, M. A. (2022) Carnosic acid encapsulated in albumin nanoparticles induces apoptosis in breast and colorectal cancer cells. Molecules 27, 4102. https://doi.org/10.3390/molecules27134102
  55. Kim, D. H., Park, K. W., Chae, I. G., Kundu, J., Kim, E. H., Kundu, J. K. and Chun, K. S. (2016) Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol. Carcinog. 55, 1096-1110. https://doi.org/10.1002/mc.22353
  56. Kim, Y. J., Kim, J. S., Seo, Y. R., Park, J. H. Y., Choi, M. S. and Sung, M. K. (2014) Carnosic acid suppresses colon tumor formation in association with antiadipogenic activity. Mol. Nutr. Food Res. 58, 2274-2285. https://doi.org/10.1002/mnfr.201400293
  57. Kopp, M. C., Larburu, N., Durairaj, V., Adams, C. J. and Ali, M. M. (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 26, 1053-1062. https://doi.org/10.1038/s41594-019-0324-9
  58. Lai, X., Li, Q., Wu, F., Lin, J., Chen, J., Zheng, H. and Guo, L. (2020) Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming. Front. Cell Dev. Biol. 8, 760. https://doi.org/10.3389/fcell.2020.00760
  59. Li, F.-J., Long, H.-Z., Zhou, Z.-W., Luo, H.-Y., Xu, S.-G. and Gao, L.-C. (2022) System Xc-/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol. 13, 910292. https://doi.org/10.3389/fphar.2022.910292
  60. Liao, X. Z., Gao, Y., Sun, L. L., Liu, J. H., Chen, H. R., Yu, L., Chen, Z. Z., Chen, W. H. and Lin, L. Z. (2020) Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway. Phytother. Res. 34, 1142-1153. https://doi.org/10.1002/ptr.6584
  61. Lilja, H., Ulmert, D. and Vickers, A. J. (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268-278. https://doi.org/10.1038/nrc2351
  62. Lim, S. H., Nam, K. H., Kim, K., Yi, S. A., Lee, J. and Han, J.-W. (2020) Rosmarinic acid methyl ester regulates ovarian cancer cell migration and reverses cisplatin resistance by inhibiting the expression of Forkhead Box M1. Pharmaceuticals 13, 302. https://doi.org/10.3390/ph13100302
  63. Lin, K.-I., Lin, C.-C., Kuo, S.-M., Lai, J.-C., Wang, Y.-Q., You, H.-L., Hsu, M.-L., Chen, C.-H. and Shiu, L.-Y. (2018) Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep. 38, BSR20180005. https://doi.org/10.1042/BSR20180005
  64. Lindsey, B. A., Markel, J. E. and Kleinerman, E. S. (2017) Osteosarcoma overview. Rheumatol. Ther. 4, 25-43. https://doi.org/10.1007/s40744-016-0050-2
  65. Linnewiel-Hermoni, K., Khanin, M., Danilenko, M., Zango, G., Amosi, Y., Levy, J. and Sharoni, Y. (2015) The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572, 28-35. https://doi.org/10.1016/j.abb.2015.02.018
  66. Linnewiel, K., Ernst, H., Caris-Veyrat, C., Ben-Dor, A., Kampf, A., Salman, H., Danilenko, M., Levy, J. and Sharoni, Y. (2009) Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic. Biol. Med. 47, 659-667. https://doi.org/10.1016/j.freeradbiomed.2009.06.008
  67. Liu, B., Li, J. and Cairns, M. J. (2014) Identifying miRNAs, targets and functions. Brief. bioinform. 15, 1-19. https://doi.org/10.1093/bib/bbs075
  68. Liu, D., Wang, B., Zhu, Y., Yan, F. and Dong, W. (2018) Carnosic acid regulates cell proliferation and invasion in chronic myeloid leukemia cancer cells via suppressing microRNA-708. J. BUON. 23, 741-746.
  69. Liu, J., Su, H. and Qu, Q.-M. (2016) Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma sh-sy5y cells via the induction of autophagy. Neurochem. Res. 41, 2311-2323. https://doi.org/10.1007/s11064-016-1945-6
  70. Liu, Y., Xu, X., Tang, H., Pan, Y., Hu, B. and Huang, G. (2021) Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int. J. Mol. Med. 47, 67. https://doi.org/10.3892/ijmm.2021.4900
  71. Loussouarn, M., Krieger-Liszkay, A., Svilar, L., Bily, A., Birtic, S. and Havaux, M. (2017) Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 175, 1381-1394. https://doi.org/10.1104/pp.17.01183
  72. Lundin, A. and Driscoll, B. (2013) Lung cancer stem cells: progress and prospects. Cancer Lett. 338, 89-93. https://doi.org/10.1016/j.canlet.2012.08.014
  73. Luo, Y., Ma, Z., Xu, X., Qi, H., Cheng, Z. and Chen, L. (2020) Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J. BUON. 25, 1245-1250.
  74. Ma, Z., Yang, J., Yang, Y., Wang, X., Chen, G., Shi, A., Lu, Y., Jia, S., Kang, X. and Lu, L. (2020) Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Phytomedicine 68, 153186. https://doi.org/10.1016/j.phymed.2020.153186
  75. Mahmoud, M. A., Okda, T. M., Omran, G. A. and Abd-Alhaseeb, M. M. (2021) Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J. Appl. Biomed. 19, 202-209. https://doi.org/10.32725/jab.2021.024
  76. Meng, P., Yoshida, H., Tanji, K., Matsumiya, T., Xing, F., Hayakari, R., Wang, L., Tsuruga, K., Tanaka, H. and Mimura, J. (2015) Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci. Res. 94, 1-9. https://doi.org/10.1016/j.neures.2014.12.003
  77. Menon, V. and Povirk, L. (2014) Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell. Biochem. 85, 321-336. https://doi.org/10.1007/978-94-017-9211-0_17
  78. Messeha, S. S., Zarmouh, N. O., Asiri, A. and Soliman, K. F. (2020) Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 885, 173419. https://doi.org/10.1016/j.ejphar.2020.173419
  79. Min, F., Liu, X., Li, Y., Dong, M., Qu, Y. and Liu, W. (2021) Carnosic acid suppresses the development of oral squamous cell carcinoma via mitochondrial-mediated apoptosis. Front. Oncol. 11, 760861. https://doi.org/10.3389/fonc.2021.760861
  80. Min, K.-J., Jung, K.-J. and Kwon, T. K. (2014) Carnosic acid induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress induction in human renal carcinoma caki cells. J. Cancer Prev. 19, 170-178. https://doi.org/10.15430/JCP.2014.19.3.170
  81. Moch, H. (2013) An overview of renal cell cancer: pathology and genetics. Semin. Cancer Biol. 23, 3-9. https://doi.org/10.1016/j.semcancer.2012.06.006
  82. Nachliely, M., Sharony, E., Kutner, A. and Danilenko, M. (2016) Novel analogs of 1, 25-dihydroxyvitamin D2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. J. Steroid Biochem. Mol. Biol. 164, 59-65. https://doi.org/10.1016/j.jsbmb.2015.09.014
  83. Nam, K. H., Yi, S. A., Nam, G., Noh, J. S., Park, J. W., Lee, M. G., Park, J. H., Oh, H., Lee, J. and Lee, K. R. (2019) Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer. BMC Cancer 19, 773. https://doi.org/10.1186/s12885-019-5997-2
  84. Nunes, S., Madureira, A. R., Campos, D., Sarmento, B., Gomes, A. M., Pintado, M. and Reis, F. (2017) Therapeutic and nutraceutical potential of rosmarinic acid-cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 57, 1799-1806.
  85. Oyadomari, S. and Mori, M. J. C. D. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381-389. https://doi.org/10.1038/sj.cdd.4401373
  86. Park, J. E., Park, B., Chae, I. G., Kim, D.-H., Kundu, J., Kundu, J. K. and Chun, K.-S. (2016) Carnosic acid induces apoptosis through inactivation of Src/STAT3 signaling pathway in human renal carcinoma Caki cells. Oncol. Rep. 35, 2723-2732. https://doi.org/10.3892/or.2016.4642
  87. Park, S. Y., Song, H., Sung, M.-K., Kang, Y.-H., Lee, K. W. and Park, J. H. Y. (2014) Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration. Int. J. Mol. Sci. 15, 12698-12713. https://doi.org/10.3390/ijms150712698
  88. Petiwala, S. M., Li, G., Bosland, M. C., Lantvit, D. D., Petukhov, P. A. and Johnson, J. J. (2016) Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis 37, 827-838. https://doi.org/10.1093/carcin/bgw052
  89. Ropero, S. and Esteller, M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19-25. https://doi.org/10.1016/j.molonc.2007.01.001
  90. Roy, A., Ahuja, S. and Bharadvaja, N. (2017) A review on medicinal plants against cancer. J. Plant Sci. Agric. Res. 2, 008.
  91. Santos, G. C., Carvalho, K. C., Falzoni, R., Simoes, A. C. Q., Rocha, R. M., Lopes, A., Vassallo, J., Reis, L. F. L., Soares, F. A. and Da Cunha, I. W. (2009) Glial fibrillary acidic protein in tumor types with cartilaginous differentiation. Mod. Pathol. 22, 1321-1327. https://doi.org/10.1038/modpathol.2009.99
  92. Sengelen, A. and Onay-Ucar, E. (2018) Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 23, 885-896. https://doi.org/10.1007/s12192-018-0896-z
  93. Shao, N., Mao, J., Xue, L., Wang, R., Zhi, F. and Lan, Q. (2019) Carnosic acid potentiates the anticancer effect of temozolomide by inducing apoptosis and autophagy in glioma. J. Neurooncol. 141, 277-288. https://doi.org/10.1007/s11060-018-03043-5
  94. Shi, B., Wang, L.-F., Meng, W.-S., Chen, L. and Meng, Z.-L. (2017) Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int. J. Oncol. 50, 2123-2135. https://doi.org/10.3892/ijo.2017.3970
  95. Song, Y., Yan, H., Chen, J., Wang, Y., Jiang, Y. and Tu, P. (2014) Characterization of in vitro and in vivo metabolites of carnosic acid, a natural antioxidant, by high performance liquid chromatography coupled with tandem mass spectrometry. J. Pharm. Biomed. Anal. 89, 183-196. https://doi.org/10.1016/j.jpba.2013.11.001
  96. Su, J., Jia, F., Lu, J., Chen, W., Sun, H., Liu, T. and Wu, X. (2020) Characterization of the metabolites of rosmarinic acid in human liver microsomes using liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 34, e4806. https://doi.org/10.1002/bmc.4806
  97. Su, K., Wang, C.-F., Zhang, Y., Cai, Y.-J., Zhang, Y.-y. and Zhao, Q. (2016) The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother. 82, 180-191. https://doi.org/10.1016/j.biopha.2016.04.056
  98. Sun, J., Zhou, C., Ma, Q., Chen, W., Atyah, M., Yin, Y., Fu, P., Liu, S., Hu, B., Ren, N. and Zhou, H. (2019a) High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J. Cancer 10, 3333-3343. https://doi.org/10.7150/jca.29769
  99. Sun, S.-n., Hu, S., Shang, Y.-p., Li, L.-y., Zhou, H., Chen, J.-s., Yang, J.-f., Li, J., Huang, Q. and Shen, C.-p. (2019b) Relevance function of microRNA-708 in the pathogenesis of cancer. Cell. Signal. 63, 109390. https://doi.org/10.1016/j.cellsig.2019.109390
  100. Tang, B., Tang, F., Wang, Z., Qi, G., Liang, X., Li, B., Yuan, S., Liu, J., Yu, S. and He, S. (2016) Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int. J. Nanomedicine 11, 6401-6420. https://doi.org/10.2147/IJN.S101285
  101. Tong, X.-p., Ma, Y.-x., Quan, D.-n., Zhang, L., Yan, M. and Fan, X.-r. (2017) Rosemary extracts upregulate Nrf2, Sestrin2, and MRP2 protein level in human hepatoma HepG2 cells. Evid. Based Complement. Alternat. Med. 2017, 7359806.
  102. Upadhyay, A. (2021) Cancer: an unknown territory; rethinking before going ahead. Genes Dis. 8, 655-661. https://doi.org/10.1016/j.gendis.2020.09.002
  103. Valdes, A., Garcia-Canas, V., Simo, C., Ibanez, C., Micol, V., Ferragut, J. A. and Cifuentes, A. (2014) Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal. Chem. 86, 9807-9815. https://doi.org/10.1021/ac502401j
  104. Valdes, A., Sullini, G., Ibanez, E., Cifuentes, A. and Garcia-Canas, V. (2015) Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. J. Funct. Foods 15, 429-439. https://doi.org/10.1016/j.jff.2015.03.043
  105. Veeresham, C. (2012) Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3, 200-201. https://doi.org/10.4103/2231-4040.104709
  106. Venkatachalam, K., Gunasekaran, S. and Namasivayam, N. (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur. J. Pharmacol. 791, 37-50. https://doi.org/10.1016/j.ejphar.2016.07.051
  107. Wang, J., Li, G., Rui, T., Kang, A., Li, G., Fu, T., Li, J., Di, L. and Cai, B. (2017) Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: Absolute bioavailability and dose proportionality. RSC Adv. 7, 9057-9063. https://doi.org/10.1039/C6RA28237G
  108. Wang, L.-Q., Wang, R., Li, X.-X., Yu, X.-N., Chen, X.-L. and Li, H. (2015) The anti-leukemic effect of carnosic acid combined with adriamycin in a K562/A02/SCID leukemia mouse model. Int. J. Clin. Exp. Med. 8, 11708.
  109. Wang, L., Yang, H., Wang, C., Shi, X. and Li, K. (2019) Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomed. Pharmacother. 120, 109443. https://doi.org/10.1016/j.biopha.2019.109443
  110. Wang, T., He, L., Jing, J., Lan, T. H., Hong, T., Wang, F., Huang, Y., Ma, G. and Zhou, Y. (2021) Caffeine-operated synthetic modules for chemogenetic control of protein activities by life style. Adv. Sci. (Weinh.) 8, 2002148.
  111. Wen, L., Tian-Cong, W., Dong-Mei, H., Yue, H., Ting, F., Wen-Jie, G. and Qiang, X. (2018) Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chin. J. Nat. Med. 16, 907-915.
  112. Wu, C.-F., Hong, C., Klauck, S. M., Lin, Y.-L. and Efferth, T. (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J. Ethnopharmacol. 176, 55-68. https://doi.org/10.1016/j.jep.2015.10.020
  113. Xiang, Q., Ma, Y., Dong, J. and Shen, R. (2015) Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells. Int. J. Food Sci. Nutr. 66, 76-84. https://doi.org/10.3109/09637486.2014.953452
  114. Xu, Y., Han, S., Lei, K., Chang, X., Wang, K., Li, Z. and Liu, J. (2016) Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur. J. Cancer Prev. 25, 481-489. https://doi.org/10.1097/CEJ.0000000000000205
  115. Yadav, R. K., Chae, S.-W., Kim, H.-R. and Chae, H. J. (2014) Endoplasmic reticulum stress and cancer. J. Cancer Prev. 19, 75-88. https://doi.org/10.15430/JCP.2014.19.2.75
  116. Yan, H., Wang, L., Li, X., Yu, C., Zhang, K., Jiang, Y., Wu, L., Lu, W. and Tu, P. (2009) High-performance liquid chromatography method for determination of carnosic acid in rat plasma and its application to pharmacokinetic study. Biomed. Chromatogr. 23, 776-781. https://doi.org/10.1002/bmc.1184
  117. Yan, M., Li, G., Petiwala, S. M., Householter, E. and Johnson, J. J. (2015) Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. J. Funct. Foods 13, 137-147. https://doi.org/10.1016/j.jff.2014.12.038
  118. Yang, K., Shen, Z., Zou, Y. and Gao, K. (2021) Rosmarinic acid inhibits migration, invasion, and p38/AP-1 signaling via miR-1225-5p in colorectal cancer cells. J. Recept. Signal Transduct. Res. 41, 284-293. https://doi.org/10.1080/10799893.2020.1808674
  119. Yesil-Celiktas, O., Sevimli, C., Bedir, E. and Vardar-Sukan, F. (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 65, 158-163. https://doi.org/10.1007/s11130-010-0166-4
  120. Yin, L., Duan, J.-J., Bian, X.-W. and Yu, S.-c. (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22, 61. https://doi.org/10.1186/s13058-020-01296-5
  121. Yoshida, H., Meng, P., Matsumiya, T., Tanji, K., Hayakari, R., Xing, F., Wang, L., Tsuruga, K., Tanaka, H. and Mimura, J. (2014) Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci. Res. 79, 83-93. https://doi.org/10.1016/j.neures.2013.11.004
  122. Yu, C., Chen, D.-q., Liu, H.-x., Li, W.-b., Lu, J.-w. and Feng, J.-f. (2019) Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p. Biomed. Pharmacother. 109, 2327-2334. https://doi.org/10.1016/j.biopha.2018.10.061
  123. Zali, H., Rezaei-Tavirani, M. and Azodi, M. (2011) Gastric cancer: prevention, risk factors and treatment. Gastroenterol. Hepatol. Bed Bench 4, 175-185.
  124. Zhang, S., Xiong, X. and Sun, Y. (2020) Functional characterization of SOX2 as an anticancer target. Signal Transduct. Target. Ther. 5, 135. https://doi.org/10.1038/s41392-020-00242-3
  125. Zhang, Y., Hu, M., Liu, L., Cheng, X.-L., Cai, J., Zhou, J. and Wang, T. (2018) Anticancer effects of Rosmarinic acid in OVCAR-3 ovarian cancer cells are mediated via induction of apoptosis, suppression of cell migration and modulation of lncRNA MALAT-1 expression. J. BUON. 23, 763-768.
  126. Zhao, L., Zhang, J., Fan, Y. and Li, Y. (2019) Antiproliferative activity of carnosic acid is mediated via inhibition of cell migration and invasion, and suppression of phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Med. Sci. Monit. 25, 7864-7871. https://doi.org/10.12659/MSM.917735
  127. Zhou, X., Wang, W., Li, Z., Chen, L., Wen, C., Ruan, Q., Xu, Z., Liu, R., Xu, J. and Bai, Y. (2022) Rosmarinic acid decreases the malignancy of pancreatic cancer through inhibiting Gli1 signaling. Phytomedicine 95, 153861. https://doi.org/10.1016/j.phymed.2021.153861