Acknowledgement
The research was supported by a grant from the College of Research and Graduate Studies at the University of Sharjah (No.2001090185) and grant (No.2001090271).
References
- Abbas, G. and Krasna, M. (2017) Overview of esophageal cancer. Ann. cardiothorac. Surg. 6, 131-136. https://doi.org/10.21037/acs.2017.03.03
- An, Y., Zhao, J., Zhang, Y., Wu, W., Hu, J., Hao, H., Qiao, Y., Tao, Y. and An, L. (2021) Rosmarinic acid induces proliferation suppression of hepatoma cells associated with NF-κB signaling pathway. Asian Pac. J. Cancer Prev. 22, 1623-1631. https://doi.org/10.31557/APJCP.2021.22.5.1623
- Balendiran, G. K., Dabur, R. and Fraser, D. (2004) The role of glutathione in cancer. Cell Biochem. Funct. 22, 343-352. https://doi.org/10.1002/cbf.1149
- Bhutia, S. K., Mukhopadhyay, S., Sinha, N., Das, D. N., Panda, P. K., Patra, S. K., Maiti, T. K., Mandal, M., Dent, P., Wang, X. Y., Das, S. K., Sarkar, D. and Fisher, P. B. (2013) Autophagy: cancer's friend or foe? Adv. Cancer Res. 118, 61-95. https://doi.org/10.1016/B978-0-12-407173-5.00003-0
- Birtic, S., Dussort, P., Pierre, F.-X., Bily, A. C. and Roller, M. (2015) Carnosic acid. Phytochemistry 115, 9-19. https://doi.org/10.1016/j.phytochem.2014.12.026
- Borras-Linares, I., Perez-Sanchez, A., Lozano-Sanchez, J., Barrajon-Catalan, E., Arraez-Roman, D., Cifuentes, A., Micol, V. and Carretero, A. S. (2015) A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem. Toxicol. 80, 215-222. https://doi.org/10.1016/j.fct.2015.03.013
- Bulgakov, V. P., Inyushkina, Y. V. and Fedoreyev, S. A. (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit. Rev. Biotechnol. 32, 203-217. https://doi.org/10.3109/07388551.2011.596804
- Cao, W., Hu, C., Wu, L., Xu, L. and Jiang, W. (2016) Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J. Pharmacol. Sci. 132, 131-137. https://doi.org/10.1016/j.jphs.2016.09.003
- Chaitanya, M. V. N. L., Ramanunny, A. K., Babu, M. R., Gulati, M., Vishwas, S., Singh, T. G., Chellappan, D. K., Adams, J., Dua, K. and Singh, S. K. (2022) Journey of rosmarinic acid as biomedicine to nano-biomedicine for treating cancer: current strategies and future perspectives. Pharmaceutics 14, 2401. https://doi.org/10.3390/pharmaceutics14112401
- Chen, X., Huang, M., Liu, D., Li, Y., Luo, Q., Pham, K., Wang, M., Zhang, J., Zhang, R., Peng, Z. and Wu, X. (2021) Absorption and transport characteristics and mechanisms of carnosic acid. Biology 10, 1278. https://doi.org/10.3390/biology10121278
- Choi, S.-K., Kam, H., Kim, K.-Y., Park, S. I. and Lee, Y.-S. (2019) Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers (Basel) 11, 1195. https://doi.org/10.3390/cancers11081195
- Chou, S.-T., Ho, B.-Y., Tai, Y.-T., Huang, C.-J. and Chao, W.-W. (2020) Bidirect effects from cisplatin combine with rosmarinic acid (RA) or hot water extracts of Glechoma hederacea (HWG) on renal cancer cells. Chin. Med. 15, 77. https://doi.org/10.1186/s13020-020-00358-2
- Cortese, K., Daga, A., Monticone, M., Tavella, S., Stefanelli, A., Aiello, C., Bisio, A., Bellese, G. and Castagnola, P. (2016) Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine 23, 679-685. https://doi.org/10.1016/j.phymed.2016.03.007
- Corveloni, A. C., Semprebon, S. C., Baranoski, A., Biazi, B. I., Zanetti, T. A. and Mantovani, M. S. (2020) Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells. J. Toxicol. Environ. Health A 83, 412-421.
- D'Alesio, C., Bellese, G., Gagliani, M. C., Aiello, C., Grasselli, E., Marcocci, G., Bisio, A., Tavella, S., Daniele, T., Cortese, K. and Castagnola, P. (2017) Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J. Exp. Clin. Cancer Res. 36, 154. https://doi.org/10.1186/s13046-017-0615-0
- Davis, A., Viera, A. J. and Mead, M. D. (2014) Leukemia: an overview for primary care. Am. Fam. Physician 89, 731-738.
- Davis, M. E. (2016) Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, S2-S8. https://doi.org/10.1188/16.CJON.S1.2-8
- de Oliveira, M. R., da Costa Ferreira, G., Peres, A. and Bosco, S. M. D. (2018) Carnosic acid suppresses the H2O2-induced mitochondria-related bioenergetics disturbances and redox impairment in SHSY5Y cells: role for Nrf2. Mol. Neurobiol. 55, 968-979. https://doi.org/10.1007/s12035-016-0372-7
- de Oliveira, M. R., Ferreira, G. C. and Schuck, P. F. (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol. In Vitro 32, 41-54. https://doi.org/10.1016/j.tiv.2015.12.005
- de Oliveira, M. R., Ferreira, G. C., Schuck, P. F. and Dal Bosco, S. M. (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem. Biol. Interact. 242, 396-406. https://doi.org/10.1016/j.cbi.2015.11.003
- de Oliveira, M. R., Peres, A., Ferreira, G. C., Schuck, P. F., Gama, C. S. and Bosco, S. M. D. (2017) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol. Neurobiol. 54, 5961-5972. https://doi.org/10.1007/s12035-016-0100-3
- Dominguez-Avila, J. A., Wall-Medrano, A., Velderrain-Rodriguez, G. R., Chen, C. Y. O., Salazar-Lopez, N. J., Robles-Sanchez, M. and Gonzalez-Aguilar, G. A. (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 8, 15-38. https://doi.org/10.1039/C6FO01475E
- Dong, Y., Shi, O., Zeng, Q., Lu, X., Wang, W., Li, Y. and Wang, Q. (2020) Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 9, 14. https://doi.org/10.1186/s40164-020-00170-6
- Doolaege, E. H. A., Raes, K., De Vos, F., Verhe, R. and De Smet, S. (2011) Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum. Nutr. 66, 196-202. https://doi.org/10.1007/s11130-011-0233-5
- Dusterhoft, S., Lokau, J. and Garbers, C. (2019) The metalloprotease ADAM17 in inflammation and cancer. Pathol. Res. Pract. 215, 152410. https://doi.org/10.1016/j.prp.2019.04.002
- El-Huneidi, W., Anjum, S., Saleh, M. A., Bustanji, Y., Abu-Gharbieh, E. and Taneera, J. (2022) Carnosic acid protects INS-1 beta-cells against streptozotocin-induced damage by inhibiting apoptosis and improving insulin secretion and glucose uptake. Molecules 27, 2102. https://doi.org/10.3390/molecules27072102
- El-Huneidi, W., Bajbouj, K., Muhammad, J. S., Vinod, A., Shafarin, J., Khoder, G., Saleh, M. A., Taneera, J. and Abu-Gharbieh, E. (2021) Carnosic acid induces apoptosis and inhibits Akt/mTOR signaling in human gastric cancer cell lines. Pharmaceuticals (Basel) 14, 230. https://doi.org/10.3390/ph14030230
- El-Huneidi, W., Shehab, N. G., Bajbouj, K., Vinod, A., El-Serafi, A., Shafarin, J., Bou Malhab, L. J., Abdel-Rahman, W. M. and AbuGharbieh, E. (2020) Micromeria fruticosa induces cell cycle arrest and apoptosis in breast and colorectal cancer cells. Pharmaceuticals (Basel) 13, 115. https://doi.org/10.3390/ph13060115
- Furtado, R. A., Oliveira, B. R., Silva, L. R., Cleto, S. S., Munari, C. C., Cunha, W. R. and Tavares, D. C. (2015) Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. Eur. J. Cancer Prev. 24, 106-112. https://doi.org/10.1097/CEJ.0000000000000055
- Gao, Q., Liu, H., Yao, Y., Geng, L., Zhang, X., Jiang, L., Shi, B. and Yang, F. (2015) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 35, 485-492. https://doi.org/10.1002/jat.3049
- Gonzalez-Vallinas, M., Molina, S., Vicente, G., Zarza, V., Martin-Hernandez, R., Garcia-Risco, M. R., Fornari, T., Reglero, G. and De Molina, A. R. (2014) Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS One 9, e98556. https://doi.org/10.1371/journal.pone.0098556
- Gonzalez-Vallinas, M., Vargas, T., Moreno-Rubio, J., Molina, S., Herranz, J., Cejas, P., Burgos, E., Aguayo, C., Custodio, A. and Reglero, G. (2015) Clinical relevance of the differential expression of the glycosyltransferase gene GCNT3 in colon cancer. Eur. J. Cancer 51, 1-8. https://doi.org/10.1016/j.ejca.2014.10.021
- Guerriero, I., Ramberg, H., Sagini, K., Ramirez-Garrastacho, M., Tasken, K. A. and Llorente, A. (2021) Implication of β2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells. PLoS One 16, e0253828. https://doi.org/10.1371/journal.pone.0253828
- Guo, S.-B., Xu, L.-L., Jiang, L.-J., Wang, F., Wang, Z.-J., Zhang, J.-Y. and Liu, B. (2019) Profiling and identification of in vivo metabolism of rosmarinic acid in rats. Zhongguo Zhong Yao Za Zhi 44, 4704-4712.
- Han, L., Li, L. and Wu, G. (2022) Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells. Mol. Cell. Probes 64, 101821. https://doi.org/10.1016/j.mcp.2022.101821
- Han, N.-n., Zhou, Q., Huang, Q. and Liu, K.-J. (2017) Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed. Pharmacother. 89, 827-837. https://doi.org/10.1016/j.biopha.2017.01.084
- Han, S., Yang, S., Cai, Z., Pan, D., Li, Z., Huang, Z., Zhang, P., Zhu, H., Lei, L. and Wang, W. (2015) Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Devel. Ther. 9, 2695-2703.
- Han, Y.-H., Kee, J.-Y. and Hong, S.-H. (2018) Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 9, 68. https://doi.org/10.3389/fphar.2018.00068
- Han, Y., Ma, L., Zhao, L., Feng, W. and Zheng, X. (2019) Rosmarinic inhibits cell proliferation, invasion and migration via up-regulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomed. Pharmacother. 115, 108878. https://doi.org/10.1016/j.biopha.2019.108878
- Hasei, S., Yamamotoya, T., Nakatsu, Y., Ohata, Y., Itoga, S., Nonaka, Y., Matsunaga, Y., Sakoda, H., Fujishiro, M. and Kushiyama, A. (2021) Carnosic acid and carnosol activate AMPK, suppress expressions of gluconeogenic and lipogenic genes, and inhibit proliferation of HepG2 cells. Int. J. Mol. Sci. 22, 4040. https://doi.org/10.3390/ijms22084040
- Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. and Mortezaee, K. (2019) Cyclooxygenase-2 in cancer: a review. J. Cell. Physiol. 234, 5683-5699. https://doi.org/10.1002/jcp.27411
- Heo, S.-K., Noh, E.-K., Yoon, D.-J., Jo, J.-C., Koh, S., Baek, J. H., Park, J.-H., Min, Y. J. and Kim, H. (2015) Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur. J. Pharmacol. 747, 36-44. https://doi.org/10.1016/j.ejphar.2014.10.064
- Huang, L., Chen, J., Quan, J. and Xiang, D. (2021) Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 12, 3065-3076. https://doi.org/10.1080/21655979.2021.1941699
- Jain, S., Dwivedi, J., Jain, P. K., Satpathy, S. and Patra, A. (2016) Medicinal plants for treatment of cancer: a brief review. Pharmacogn. J. 8, 87-102. https://doi.org/10.5530/pj.2016.2.1
- Jaiswal, P. K., Goel, A. and Mittal, R. (2015) Survivin: a molecular biomarker in cancer. Indian J. Med. Res. 141, 389-397. https://doi.org/10.4103/0971-5916.159250
- Jang, Y.-G., Hwang, K.-A. and Choi, K.-C. (2018) Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients 10, 1784. https://doi.org/10.3390/nu10111784
- Jiang, S., Qiu, Y., Wang, Z., Ji, Y., Zhang, X., Yan, X. and Zhan, Z. (2021) Carnosic acid induces antiproliferation and anti-metastatic property of esophageal cancer cells via MAPK signaling pathways. J. Oncol. 2021, 4451533. https://doi.org/10.1155/2021/4451533
- Jin, B.-R., Chung, K.-S., Hwang, S., Hwang, S. N., Rhee, K.-J., Lee, M. and An, H.-J. (2021) Rosmarinic acid represses colitis-associated colon cancer: a pivotal involvement of the TLR4-mediated NF-κB-STAT3 axis. Neoplasia 23, 561-573. https://doi.org/10.1016/j.neo.2021.05.002
- Jin, B., Liu, J., Gao, D., Xu, Y., He, L., Zang, Y., Li, N. and Lin, D. (2020) Detailed studies on the anticancer action of rosmarinic acid in human Hep-G2 liver carcinoma cells: evaluating its effects on cellular apoptosis, caspase activation and suppression of cell migration and invasion. J. BUON. 25, 1383-1389.
- Jung, K.-J., Min, K.-j., Bae, J. H. and Kwon, T. K. (2015) Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget 6, 1556. https://doi.org/10.18632/oncotarget.2727
- Juskowiak, B., Bogacz, A., Wolek, M., Kaminski, A., Uzar, I., Seremak-Mrozikiewicz, A. and Czerny, B. (2018) Expression profiling of genes modulated by rosmarinic acid (RA) in MCF-7 breast cancer cells. Ginekol. Pol. 89, 541-545. https://doi.org/10.5603/GP.a2018.0092
- Jyotsana, N., Ta, K. and DelGiorno, K. (2022) The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front. Oncol. 12, 858462. https://doi.org/10.3389/fonc.2022.858462
- Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67. https://doi.org/10.1016/j.cell.2010.03.015
- Khella, K. F., Abd El Maksoud, A. I., Hassan, A., Abdel-Ghany, S. E., Elsanhoty, R. M., Aladhadh, M. A. and Abdel-Hakeem, M. A. (2022) Carnosic acid encapsulated in albumin nanoparticles induces apoptosis in breast and colorectal cancer cells. Molecules 27, 4102. https://doi.org/10.3390/molecules27134102
- Kim, D. H., Park, K. W., Chae, I. G., Kundu, J., Kim, E. H., Kundu, J. K. and Chun, K. S. (2016) Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol. Carcinog. 55, 1096-1110. https://doi.org/10.1002/mc.22353
- Kim, Y. J., Kim, J. S., Seo, Y. R., Park, J. H. Y., Choi, M. S. and Sung, M. K. (2014) Carnosic acid suppresses colon tumor formation in association with antiadipogenic activity. Mol. Nutr. Food Res. 58, 2274-2285. https://doi.org/10.1002/mnfr.201400293
- Kopp, M. C., Larburu, N., Durairaj, V., Adams, C. J. and Ali, M. M. (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 26, 1053-1062. https://doi.org/10.1038/s41594-019-0324-9
- Lai, X., Li, Q., Wu, F., Lin, J., Chen, J., Zheng, H. and Guo, L. (2020) Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming. Front. Cell Dev. Biol. 8, 760. https://doi.org/10.3389/fcell.2020.00760
- Li, F.-J., Long, H.-Z., Zhou, Z.-W., Luo, H.-Y., Xu, S.-G. and Gao, L.-C. (2022) System Xc-/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol. 13, 910292. https://doi.org/10.3389/fphar.2022.910292
- Liao, X. Z., Gao, Y., Sun, L. L., Liu, J. H., Chen, H. R., Yu, L., Chen, Z. Z., Chen, W. H. and Lin, L. Z. (2020) Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway. Phytother. Res. 34, 1142-1153. https://doi.org/10.1002/ptr.6584
- Lilja, H., Ulmert, D. and Vickers, A. J. (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268-278. https://doi.org/10.1038/nrc2351
- Lim, S. H., Nam, K. H., Kim, K., Yi, S. A., Lee, J. and Han, J.-W. (2020) Rosmarinic acid methyl ester regulates ovarian cancer cell migration and reverses cisplatin resistance by inhibiting the expression of Forkhead Box M1. Pharmaceuticals 13, 302. https://doi.org/10.3390/ph13100302
- Lin, K.-I., Lin, C.-C., Kuo, S.-M., Lai, J.-C., Wang, Y.-Q., You, H.-L., Hsu, M.-L., Chen, C.-H. and Shiu, L.-Y. (2018) Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep. 38, BSR20180005. https://doi.org/10.1042/BSR20180005
- Lindsey, B. A., Markel, J. E. and Kleinerman, E. S. (2017) Osteosarcoma overview. Rheumatol. Ther. 4, 25-43. https://doi.org/10.1007/s40744-016-0050-2
- Linnewiel-Hermoni, K., Khanin, M., Danilenko, M., Zango, G., Amosi, Y., Levy, J. and Sharoni, Y. (2015) The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572, 28-35. https://doi.org/10.1016/j.abb.2015.02.018
- Linnewiel, K., Ernst, H., Caris-Veyrat, C., Ben-Dor, A., Kampf, A., Salman, H., Danilenko, M., Levy, J. and Sharoni, Y. (2009) Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic. Biol. Med. 47, 659-667. https://doi.org/10.1016/j.freeradbiomed.2009.06.008
- Liu, B., Li, J. and Cairns, M. J. (2014) Identifying miRNAs, targets and functions. Brief. bioinform. 15, 1-19. https://doi.org/10.1093/bib/bbs075
- Liu, D., Wang, B., Zhu, Y., Yan, F. and Dong, W. (2018) Carnosic acid regulates cell proliferation and invasion in chronic myeloid leukemia cancer cells via suppressing microRNA-708. J. BUON. 23, 741-746.
- Liu, J., Su, H. and Qu, Q.-M. (2016) Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma sh-sy5y cells via the induction of autophagy. Neurochem. Res. 41, 2311-2323. https://doi.org/10.1007/s11064-016-1945-6
- Liu, Y., Xu, X., Tang, H., Pan, Y., Hu, B. and Huang, G. (2021) Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int. J. Mol. Med. 47, 67. https://doi.org/10.3892/ijmm.2021.4900
- Loussouarn, M., Krieger-Liszkay, A., Svilar, L., Bily, A., Birtic, S. and Havaux, M. (2017) Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 175, 1381-1394. https://doi.org/10.1104/pp.17.01183
- Lundin, A. and Driscoll, B. (2013) Lung cancer stem cells: progress and prospects. Cancer Lett. 338, 89-93. https://doi.org/10.1016/j.canlet.2012.08.014
- Luo, Y., Ma, Z., Xu, X., Qi, H., Cheng, Z. and Chen, L. (2020) Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J. BUON. 25, 1245-1250.
- Ma, Z., Yang, J., Yang, Y., Wang, X., Chen, G., Shi, A., Lu, Y., Jia, S., Kang, X. and Lu, L. (2020) Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Phytomedicine 68, 153186. https://doi.org/10.1016/j.phymed.2020.153186
- Mahmoud, M. A., Okda, T. M., Omran, G. A. and Abd-Alhaseeb, M. M. (2021) Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J. Appl. Biomed. 19, 202-209. https://doi.org/10.32725/jab.2021.024
- Meng, P., Yoshida, H., Tanji, K., Matsumiya, T., Xing, F., Hayakari, R., Wang, L., Tsuruga, K., Tanaka, H. and Mimura, J. (2015) Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci. Res. 94, 1-9. https://doi.org/10.1016/j.neures.2014.12.003
- Menon, V. and Povirk, L. (2014) Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell. Biochem. 85, 321-336. https://doi.org/10.1007/978-94-017-9211-0_17
- Messeha, S. S., Zarmouh, N. O., Asiri, A. and Soliman, K. F. (2020) Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 885, 173419. https://doi.org/10.1016/j.ejphar.2020.173419
- Min, F., Liu, X., Li, Y., Dong, M., Qu, Y. and Liu, W. (2021) Carnosic acid suppresses the development of oral squamous cell carcinoma via mitochondrial-mediated apoptosis. Front. Oncol. 11, 760861. https://doi.org/10.3389/fonc.2021.760861
- Min, K.-J., Jung, K.-J. and Kwon, T. K. (2014) Carnosic acid induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress induction in human renal carcinoma caki cells. J. Cancer Prev. 19, 170-178. https://doi.org/10.15430/JCP.2014.19.3.170
- Moch, H. (2013) An overview of renal cell cancer: pathology and genetics. Semin. Cancer Biol. 23, 3-9. https://doi.org/10.1016/j.semcancer.2012.06.006
- Nachliely, M., Sharony, E., Kutner, A. and Danilenko, M. (2016) Novel analogs of 1, 25-dihydroxyvitamin D2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. J. Steroid Biochem. Mol. Biol. 164, 59-65. https://doi.org/10.1016/j.jsbmb.2015.09.014
- Nam, K. H., Yi, S. A., Nam, G., Noh, J. S., Park, J. W., Lee, M. G., Park, J. H., Oh, H., Lee, J. and Lee, K. R. (2019) Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer. BMC Cancer 19, 773. https://doi.org/10.1186/s12885-019-5997-2
- Nunes, S., Madureira, A. R., Campos, D., Sarmento, B., Gomes, A. M., Pintado, M. and Reis, F. (2017) Therapeutic and nutraceutical potential of rosmarinic acid-cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 57, 1799-1806.
- Oyadomari, S. and Mori, M. J. C. D. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381-389. https://doi.org/10.1038/sj.cdd.4401373
- Park, J. E., Park, B., Chae, I. G., Kim, D.-H., Kundu, J., Kundu, J. K. and Chun, K.-S. (2016) Carnosic acid induces apoptosis through inactivation of Src/STAT3 signaling pathway in human renal carcinoma Caki cells. Oncol. Rep. 35, 2723-2732. https://doi.org/10.3892/or.2016.4642
- Park, S. Y., Song, H., Sung, M.-K., Kang, Y.-H., Lee, K. W. and Park, J. H. Y. (2014) Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration. Int. J. Mol. Sci. 15, 12698-12713. https://doi.org/10.3390/ijms150712698
- Petiwala, S. M., Li, G., Bosland, M. C., Lantvit, D. D., Petukhov, P. A. and Johnson, J. J. (2016) Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis 37, 827-838. https://doi.org/10.1093/carcin/bgw052
- Ropero, S. and Esteller, M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19-25. https://doi.org/10.1016/j.molonc.2007.01.001
- Roy, A., Ahuja, S. and Bharadvaja, N. (2017) A review on medicinal plants against cancer. J. Plant Sci. Agric. Res. 2, 008.
- Santos, G. C., Carvalho, K. C., Falzoni, R., Simoes, A. C. Q., Rocha, R. M., Lopes, A., Vassallo, J., Reis, L. F. L., Soares, F. A. and Da Cunha, I. W. (2009) Glial fibrillary acidic protein in tumor types with cartilaginous differentiation. Mod. Pathol. 22, 1321-1327. https://doi.org/10.1038/modpathol.2009.99
- Sengelen, A. and Onay-Ucar, E. (2018) Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 23, 885-896. https://doi.org/10.1007/s12192-018-0896-z
- Shao, N., Mao, J., Xue, L., Wang, R., Zhi, F. and Lan, Q. (2019) Carnosic acid potentiates the anticancer effect of temozolomide by inducing apoptosis and autophagy in glioma. J. Neurooncol. 141, 277-288. https://doi.org/10.1007/s11060-018-03043-5
- Shi, B., Wang, L.-F., Meng, W.-S., Chen, L. and Meng, Z.-L. (2017) Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int. J. Oncol. 50, 2123-2135. https://doi.org/10.3892/ijo.2017.3970
- Song, Y., Yan, H., Chen, J., Wang, Y., Jiang, Y. and Tu, P. (2014) Characterization of in vitro and in vivo metabolites of carnosic acid, a natural antioxidant, by high performance liquid chromatography coupled with tandem mass spectrometry. J. Pharm. Biomed. Anal. 89, 183-196. https://doi.org/10.1016/j.jpba.2013.11.001
- Su, J., Jia, F., Lu, J., Chen, W., Sun, H., Liu, T. and Wu, X. (2020) Characterization of the metabolites of rosmarinic acid in human liver microsomes using liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 34, e4806. https://doi.org/10.1002/bmc.4806
- Su, K., Wang, C.-F., Zhang, Y., Cai, Y.-J., Zhang, Y.-y. and Zhao, Q. (2016) The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother. 82, 180-191. https://doi.org/10.1016/j.biopha.2016.04.056
- Sun, J., Zhou, C., Ma, Q., Chen, W., Atyah, M., Yin, Y., Fu, P., Liu, S., Hu, B., Ren, N. and Zhou, H. (2019a) High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J. Cancer 10, 3333-3343. https://doi.org/10.7150/jca.29769
- Sun, S.-n., Hu, S., Shang, Y.-p., Li, L.-y., Zhou, H., Chen, J.-s., Yang, J.-f., Li, J., Huang, Q. and Shen, C.-p. (2019b) Relevance function of microRNA-708 in the pathogenesis of cancer. Cell. Signal. 63, 109390. https://doi.org/10.1016/j.cellsig.2019.109390
- Tang, B., Tang, F., Wang, Z., Qi, G., Liang, X., Li, B., Yuan, S., Liu, J., Yu, S. and He, S. (2016) Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int. J. Nanomedicine 11, 6401-6420. https://doi.org/10.2147/IJN.S101285
- Tong, X.-p., Ma, Y.-x., Quan, D.-n., Zhang, L., Yan, M. and Fan, X.-r. (2017) Rosemary extracts upregulate Nrf2, Sestrin2, and MRP2 protein level in human hepatoma HepG2 cells. Evid. Based Complement. Alternat. Med. 2017, 7359806.
- Upadhyay, A. (2021) Cancer: an unknown territory; rethinking before going ahead. Genes Dis. 8, 655-661. https://doi.org/10.1016/j.gendis.2020.09.002
- Valdes, A., Garcia-Canas, V., Simo, C., Ibanez, C., Micol, V., Ferragut, J. A. and Cifuentes, A. (2014) Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal. Chem. 86, 9807-9815. https://doi.org/10.1021/ac502401j
- Valdes, A., Sullini, G., Ibanez, E., Cifuentes, A. and Garcia-Canas, V. (2015) Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. J. Funct. Foods 15, 429-439. https://doi.org/10.1016/j.jff.2015.03.043
- Veeresham, C. (2012) Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3, 200-201. https://doi.org/10.4103/2231-4040.104709
- Venkatachalam, K., Gunasekaran, S. and Namasivayam, N. (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur. J. Pharmacol. 791, 37-50. https://doi.org/10.1016/j.ejphar.2016.07.051
- Wang, J., Li, G., Rui, T., Kang, A., Li, G., Fu, T., Li, J., Di, L. and Cai, B. (2017) Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: Absolute bioavailability and dose proportionality. RSC Adv. 7, 9057-9063. https://doi.org/10.1039/C6RA28237G
- Wang, L.-Q., Wang, R., Li, X.-X., Yu, X.-N., Chen, X.-L. and Li, H. (2015) The anti-leukemic effect of carnosic acid combined with adriamycin in a K562/A02/SCID leukemia mouse model. Int. J. Clin. Exp. Med. 8, 11708.
- Wang, L., Yang, H., Wang, C., Shi, X. and Li, K. (2019) Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomed. Pharmacother. 120, 109443. https://doi.org/10.1016/j.biopha.2019.109443
- Wang, T., He, L., Jing, J., Lan, T. H., Hong, T., Wang, F., Huang, Y., Ma, G. and Zhou, Y. (2021) Caffeine-operated synthetic modules for chemogenetic control of protein activities by life style. Adv. Sci. (Weinh.) 8, 2002148.
- Wen, L., Tian-Cong, W., Dong-Mei, H., Yue, H., Ting, F., Wen-Jie, G. and Qiang, X. (2018) Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chin. J. Nat. Med. 16, 907-915.
- Wu, C.-F., Hong, C., Klauck, S. M., Lin, Y.-L. and Efferth, T. (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J. Ethnopharmacol. 176, 55-68. https://doi.org/10.1016/j.jep.2015.10.020
- Xiang, Q., Ma, Y., Dong, J. and Shen, R. (2015) Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells. Int. J. Food Sci. Nutr. 66, 76-84. https://doi.org/10.3109/09637486.2014.953452
- Xu, Y., Han, S., Lei, K., Chang, X., Wang, K., Li, Z. and Liu, J. (2016) Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur. J. Cancer Prev. 25, 481-489. https://doi.org/10.1097/CEJ.0000000000000205
- Yadav, R. K., Chae, S.-W., Kim, H.-R. and Chae, H. J. (2014) Endoplasmic reticulum stress and cancer. J. Cancer Prev. 19, 75-88. https://doi.org/10.15430/JCP.2014.19.2.75
- Yan, H., Wang, L., Li, X., Yu, C., Zhang, K., Jiang, Y., Wu, L., Lu, W. and Tu, P. (2009) High-performance liquid chromatography method for determination of carnosic acid in rat plasma and its application to pharmacokinetic study. Biomed. Chromatogr. 23, 776-781. https://doi.org/10.1002/bmc.1184
- Yan, M., Li, G., Petiwala, S. M., Householter, E. and Johnson, J. J. (2015) Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. J. Funct. Foods 13, 137-147. https://doi.org/10.1016/j.jff.2014.12.038
- Yang, K., Shen, Z., Zou, Y. and Gao, K. (2021) Rosmarinic acid inhibits migration, invasion, and p38/AP-1 signaling via miR-1225-5p in colorectal cancer cells. J. Recept. Signal Transduct. Res. 41, 284-293. https://doi.org/10.1080/10799893.2020.1808674
- Yesil-Celiktas, O., Sevimli, C., Bedir, E. and Vardar-Sukan, F. (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 65, 158-163. https://doi.org/10.1007/s11130-010-0166-4
- Yin, L., Duan, J.-J., Bian, X.-W. and Yu, S.-c. (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22, 61. https://doi.org/10.1186/s13058-020-01296-5
- Yoshida, H., Meng, P., Matsumiya, T., Tanji, K., Hayakari, R., Xing, F., Wang, L., Tsuruga, K., Tanaka, H. and Mimura, J. (2014) Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci. Res. 79, 83-93. https://doi.org/10.1016/j.neures.2013.11.004
- Yu, C., Chen, D.-q., Liu, H.-x., Li, W.-b., Lu, J.-w. and Feng, J.-f. (2019) Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p. Biomed. Pharmacother. 109, 2327-2334. https://doi.org/10.1016/j.biopha.2018.10.061
- Zali, H., Rezaei-Tavirani, M. and Azodi, M. (2011) Gastric cancer: prevention, risk factors and treatment. Gastroenterol. Hepatol. Bed Bench 4, 175-185.
- Zhang, S., Xiong, X. and Sun, Y. (2020) Functional characterization of SOX2 as an anticancer target. Signal Transduct. Target. Ther. 5, 135. https://doi.org/10.1038/s41392-020-00242-3
- Zhang, Y., Hu, M., Liu, L., Cheng, X.-L., Cai, J., Zhou, J. and Wang, T. (2018) Anticancer effects of Rosmarinic acid in OVCAR-3 ovarian cancer cells are mediated via induction of apoptosis, suppression of cell migration and modulation of lncRNA MALAT-1 expression. J. BUON. 23, 763-768.
- Zhao, L., Zhang, J., Fan, Y. and Li, Y. (2019) Antiproliferative activity of carnosic acid is mediated via inhibition of cell migration and invasion, and suppression of phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. Med. Sci. Monit. 25, 7864-7871. https://doi.org/10.12659/MSM.917735
- Zhou, X., Wang, W., Li, Z., Chen, L., Wen, C., Ruan, Q., Xu, Z., Liu, R., Xu, J. and Bai, Y. (2022) Rosmarinic acid decreases the malignancy of pancreatic cancer through inhibiting Gli1 signaling. Phytomedicine 95, 153861. https://doi.org/10.1016/j.phymed.2021.153861