Acknowledgement
This work was done for S.Y. Sohn's Master's degree. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [grant number 2021R1A6A1A03044296]. This research was supported by the Chung-Ang University Research Scholarship Grants in 2021 (to J.K.).
References
- Adams, J. (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov. Today 8, 307-315. https://doi.org/10.1016/S1359-6446(03)02647-3
- Bach, S. V. and Hegde, A. N. (2016) The proteasome and epigenetics: zooming in on histone modifications. Biomol. Concepts 7, 215-227. https://doi.org/10.1515/bmc-2016-0016
- Brignole, C., Marimpietri, D., Pastorino, F., Nico, B., Di Paolo, D., Cioni, M., Piccardi, F., Cilli, M., Pezzolo, A., Corrias, M. V., Pistoia, V., Ribatti, D., Pagnan, G. and Ponzoni, M. (2006) Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J. Natl. Cancer Inst. 98, 1142-1157. https://doi.org/10.1093/jnci/djj309
- Chen, D. and Dou, Q. P. (2010) The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr. Protein Pept. Sci. 11, 459-470. https://doi.org/10.2174/138920310791824057
- Ciechanover, A. (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 12, 1178-1190. https://doi.org/10.1038/sj.cdd.4401692
- Ciechanover, A., DiGiuseppe, J. A., Bercovich, B., Orian, A., Richter, J. D., Schwartz, A. L. and Brodeur, G. M. (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. U. S. A. 88, 139-143. https://doi.org/10.1073/pnas.88.1.139
- Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C. and Ciechanover, A. (2016) The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int. J. Biochem. Cell Biol. 79, 403-418. https://doi.org/10.1016/j.biocel.2016.07.019
- Dick, L. R. and Fleming, P. E. (2010) Building on bortezomib: secondgeneration proteasome inhibitors as anti-cancer therapy. Drug Discov. Today 15, 243-249. https://doi.org/10.1016/j.drudis.2010.01.008
- Doeppner, T. R., Kaltwasser, B., Kuckelkorn, U., Henkelein, P., Bretschneider, E., Kilic, E. and Hermann, D. M. (2016) Systemic proteasome inhibition induces sustained post-stroke neurological recovery and neuroprotection via mechanisms involving reversal of peripheral immunosuppression and preservation of blood-brain-barrier integrity. Mol. Neurobiol. 53, 6332-6341. https://doi.org/10.1007/s12035-015-9533-3
- Du, B. Y., Song, W., Bai, L., Shen, Y., Miao, S. Y. and Wang, L. F. (2012) Synergistic effects of combination treatment with bortezomib and doxorubicin in human neuroblastoma cell lines. Chemotherapy 58, 44-51. https://doi.org/10.1159/000335603
- Giuliani, N., Morandi, F., Tagliaferri, S., Lazzaretti, M., Bonomini, S., Crugnola, M., Mancini, C., Martella, E., Ferrari, L., Tabilio, A. and Rizzoli, V. (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110, 334-338. https://doi.org/10.1182/blood-2006-11-059188
- Huehnchen, P., Springer, A., Kern, J., Kopp, U., Kohler, S., Alexander, T., Hiepe, F., Meisel, A., Boehmerle, W. and Endres, M. (2020) Bortezomib at therapeutic doses poorly passes the blood-brain barrier and does not impair cognition. Brain Commun. 2, fcaa021. https://doi.org/10.1093/braincomms/fcaa021
- Kaushik, S. and Cuervo, A. M. (2015) Proteostasis and aging. Nat. Med. 21, 1406-1415. https://doi.org/10.1038/nm.4001
- Kim, H. J., McMillan, E., Han, F. and Svendsen, C. N. (2009) Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 27, 390-398. https://doi.org/10.1634/stemcells.2007-1047
- Kim, H. J., Sugimori, M., Nakafuku, M. and Svendsen, C. N. (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp. Neurol. 203, 394-405. https://doi.org/10.1016/j.expneurol.2006.08.029
- Kim, Y. M. and Kim, H. J. (2020) Proteasome inhibitor MG132 is toxic and inhibits the proliferation of rat neural stem cells but increases BDNF expression to protect neurons. Biomolecules 10, 1507. https://doi.org/10.3390/biom10111507
- Kong, S. Y., Kim, W., Lee, H. R. and Kim, H. J. (2018) The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells. FASEB J. 32, 1108-1119. https://doi.org/10.1096/fj.201700780R
- Kong, S. Y., Park, M. H., Lee, M., Kim, J. O., Lee, H. R., Han, B. W., Svendsen, C. N., Sung, S. H. and Kim, H. J. (2015) Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One 10, e0118188. https://doi.org/10.1371/journal.pone.0118188
- Lee, H. R., Ann, J., Kim, Y. M., Lee, J. and Kim, H. J. (2021) The KDM5 inhibitor KDM5-C70 induces astrocyte differentiation in rat neural stem cells. ACS Chem. Neurosci. 12, 441-446. https://doi.org/10.1021/acschemneuro.0c00613
- Lee, H. R., Farhanullah, Lee, J., Jajoo, R., Kong, S. Y., Shin, J. Y., Kim, J. O., Lee, J., Lee, J. and Kim, H. J. (2016) Discovery of a small molecule that enhances astrocytogenesis by activation of STAT3, SMAD1/5/8, and ERK1/2 via induction of cytokines in neural stem cells. ACS Chem. Neurosci. 7, 90-99. https://doi.org/10.1021/acschemneuro.5b00243
- Lee, H. R., Lee, J. and Kim, H. J. (2019) Differential effects of MEK inhibitors on rat neural stem cell differentiation: repressive roles of MEK2 in neurogenesis and induction of astrocytogenesis by PD98059. Pharmacol. Res. 149, 104466. https://doi.org/10.1016/j.phrs.2019.104466
- Li, B., Hu, Q., Xu, R., Ren, H., Fei, E., Chen, D. and Wang, G. (2012) Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol. 13, 20. https://doi.org/10.1186/1471-2121-13-20
- Li, T., Timmins, H. C., King, T., Kiernan, M. C., Goldstein, D. and Park, S. B. (2020) Characteristics and risk factors of bortezomib induced peripheral neuropathy: a systematic review of phase III trials. Hematol. Oncol. 38, 229-243. https://doi.org/10.1002/hon.2706
- Martinez-Vicente, M., Sovak, G. and Cuervo, A. M. (2005) Protein degradation and aging. Exp. Gerontol. 40, 622-633. https://doi.org/10.1016/j.exger.2005.07.005
- Michaelis, M., Fichtner, I., Behrens, D., Haider, W., Rothweiler, F., Mack, A., Cinatl, J., Doerr, H. W. and Cinatl, J., Jr. (2006) Anti-cancer effects of bortezomib against chemoresistant neuroblastoma cell lines in vitro and in vivo. Int. J. Oncol. 28, 439-446.
- Mukherjee, S., Raje, N., Schoonmaker, J. A., Liu, J. C., Hideshima, T., Wein, M. N., Jones, D. C., Vallet, S., Bouxsein, M. L., Pozzi, S., Chhetri, S., Seo, Y. D., Aronson, J. P., Patel, C., Fulciniti, M., Purton, L. E., Glimcher, L. H., Lian, J. B., Stein, G., Anderson, K. C. and Scadden, D. T. (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J. Clin. Invest. 118, 491-504.
- Nam, T., Han, J. H., Devkota, S. and Lee, H. W. (2017) Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system. Mol. Cells 40, 897-905.
- Oberg, C., Li, J., Pauley, A., Wolf, E., Gurney, M. and Lendahl, U. (2001) The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 35847-35853. https://doi.org/10.1074/jbc.M103992200
- Paul, S. (2008) Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 30, 1172-1184. https://doi.org/10.1002/bies.20852
- Pero, M. E., Meregalli, C., Qu, X., Shin, G. J., Kumar, A., Shorey, M., Rolls, M. M., Tanji, K., Brannagan, T. H., Alberti, P., Fumagalli, G., Monza, L., Grueber, W. B., Cavaletti, G. and Bartolini, F. (2021) Pathogenic role of delta 2 tubulin in bortezomib-induced peripheral neuropathy. Proc. Natl. Acad. Sci. U. S. A. 118, e2012685118. https://doi.org/10.1073/pnas.2012685118
- Pohl, C. and Dikic, I. (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366, 818-822. https://doi.org/10.1126/science.aax3769
- Poruchynsky, M. S., Sackett, D. L., Robey, R. W., Ward, Y., Annunziata, C. and Fojo, T. (2008) Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7, 940-949. https://doi.org/10.4161/cc.7.7.5625
- Ramakrishna, S., Suresh, B., Lim, K. H., Cha, B. H., Lee, S. H., Kim, K. S. and Baek, K. H. (2011) PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev. 20, 1511-1519. https://doi.org/10.1089/scd.2010.0410
- Rechsteiner, M. (1991) Natural substrates of the ubiquitin proteolytic pathway. Cell 66, 615-618. https://doi.org/10.1016/0092-8674(91)90104-7
- Rechsteiner, M. and Rogers, S. W. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267-271. https://doi.org/10.1016/S0968-0004(96)10031-1
- Richardson, P. G., Xie, W., Mitsiades, C., Chanan-Khan, A. A., Lonial, S., Hassoun, H., Avigan, D. E., Oaklander, A. L., Kuter, D. J., Wen, P. Y., Kesari, S., Briemberg, H. R., Schlossman, R. L., Munshi, N. C., Heffner, L. T., Doss, D., Esseltine, D. L., Weller, E., Anderson, K. C. and Amato, A. A. (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J. Clin. Oncol. 27, 3518-3525. https://doi.org/10.1200/JCO.2008.18.3087
- Robak, P. and Robak, T. (2019) Bortezomib for the treatment of hematologic malignancies: 15 years later. Drugs R. D. 19, 73-92. https://doi.org/10.1007/s40268-019-0269-9
- Romero-Granados, R., Fontan-Lozano, A., Aguilar-Montilla, F. J. and Carrion, A. M. (2011) Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome. PLoS One 6, e28927. https://doi.org/10.1371/journal.pone.0028927
- San Miguel, J., Blade, J., Boccadoro, M., Cavenagh, J., Glasmacher, A., Jagannath, S., Lonial, S., Orlowski, R. Z., Sonneveld, P. and Ludwig, H. (2006) A practical update on the use of bortezomib in the management of multiple myeloma. Oncologist 11, 51-61. https://doi.org/10.1634/theoncologist.11-1-51
- Scheibe, F., Pruss, H., Mengel, A. M., Kohler, S., Numann, A., Kohnlein, M., Ruprecht, K., Alexander, T., Hiepe, F. and Meisel, A. (2017) Bortezomib for treatment of therapy-refractory anti-NMDA receptor encephalitis. Neurology 88, 366-370. https://doi.org/10.1212/WNL.0000000000003536
- Selvy, M., Kerckhove, N., Pereira, B., Barreau, F., Nguyen, D., Busserolles, J., Giraudet, F., Cabrespine, A., Chaleteix, C., Soubrier, M., Bay, J. O., Lemal, R. and Balayssac, D. (2021) Prevalence of chemotherapy-induced peripheral neuropathy in multiple myeloma patients and its impact on quality of life: a single center cross-sectional study. Front. Pharmacol. 12, 637593. https://doi.org/10.3389/fphar.2021.637593
- Thibaudeau, T. A. and Smith, D. M. (2019) A practical review of proteasome pharmacology. Pharmacol. Rev. 71, 170-197. https://doi.org/10.1124/pr.117.015370
- Tsurumi, C., Ishida, N., Tamura, T., Kakizuka, A., Nishida, E., Okumura, E., Kishimoto, T., Inagaki, M., Okazaki, K., Sagata, N., Ichihara, A. and Tanaka, K. (1995) Degradation of c-Fos by the 26S proteasome is accelerated by c-Jun and multiple protein kinases. Mol. Cell. Biol. 15, 5682-5687. https://doi.org/10.1128/MCB.15.10.5682
- Velasco, R., Alberti, P., Bruna, J., Psimaras, D. and Argyriou, A. A. (2019) Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: from pathogenesis to treatment. J. Peripher. Nerv. Syst. 24 Suppl 2, S52-S62. https://doi.org/10.1111/jns.12338
- Velasco, R., Petit, J., Clapes, V., Verdu, E., Navarro, X. and Bruna, J. (2010) Neurological monitoring reduces the incidence of bortezomib-induced peripheral neuropathy in multiple myeloma patients. J. Peripher. Nerv. Syst. 15, 17-25. https://doi.org/10.1111/j.1529-8027.2010.00248.x
- Vilchez, D., Saez, I. and Dillin, A. (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659. https://doi.org/10.1038/ncomms6659
- Yan, W., Wu, Z., Zhang, Y., Hong, D., Dong, X., Liu, L., Rao, Y., Huang, L., Zhang, X. and Wu, J. (2021) The molecular and cellular insight into the toxicology of bortezomib-induced peripheral neuropathy. Biomed. Pharmacother. 142, 112068. https://doi.org/10.1016/j.biopha.2021.112068
- Ye, Y. (2018) Regulation of protein homeostasis by unconventional protein secretion in mammalian cells. Semin. Cell Dev. Biol. 83, 29-35. https://doi.org/10.1016/j.semcdb.2018.03.006
- Zhang, C., Tian, D. C., Yang, C. S., Han, B., Wang, J., Yang, L. and Shi, F. D. (2017) Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder. JAMA Neurol. 74, 1010-1012. https://doi.org/10.1001/jamaneurol.2017.1336
- Zhang, D., Fan, R., Lei, L., Lei, L., Wang, Y., Lv, N., Chen, P., Williamson, R. A., Wang, B. and Hu, J. (2020) Cell cycle exit during bortezomib-induced osteogenic differentiation of mesenchymal stem cells was mediated by Xbp1s-upregulated p21(Cip1) and p27(Kip1). J. Cell. Mol. Med. 24, 9428-9438. https://doi.org/10.1111/jcmm.15605