DOI QR코드

DOI QR Code

Compact near-eye display for firefighter's self-contained breathing apparatus

  • Ungyeon Yang (Content Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2023.02.20
  • Accepted : 2023.08.26
  • Published : 2023.12.10

Abstract

We introduce a display for virtual-reality (VR) fire training. Firefighters prefer to wear and operate a real breathing apparatus while experiencing full visual immersion in a VR fire space. Thus, we used a thin head-mounted display (HMD) with a light field and folded optical system, aiming to both minimize the volume for integration in front of the face into a breathing apparatus and maintain adequate visibility, including a wide viewing angle and resolution similar to that of commercial displays. We developed the optical system testing modules and prototypes of the integrated breathing apparatus. Through iterative testing, the thickness of the output optical module in front of the eyes was reduced from 50 mm to 60 mm to less than 20 mm while maintaining a viewing angle of 103°. In addition, the resolution and image quality degradation of the light field in the display was mitigated. Hence, we obtained a display with a structure consistent with the needs of firefighters in the field. In future work, we will conduct user evaluation regarding fire scene reproducibility by combining immersive VR fire training and real firefighting equipment.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) under a grant funded by the Korea Government, Ministry of Science and ICT (MSIT) (no. 2019-0-01347; Development of Realistic Fire Training Content Technology to Help Simulate Fire Sites and Improve Command Capabilities).

References

  1. K. E. Bystrom, W. Barfield, and C. Hendrix, A conceptual model of the sense of presence in virtual environments, Presence: Teleop. Virtual Environ. 8 (1999), no. 2, 241-244. https://doi.org/10.1162/105474699566107
  2. Inside the Royal Navy's futuristic training centre. Available from: https://www.wired.co.uk/article/royal-navy-trainingjobs [last accessed Jan 2023].
  3. M. Oberhauser, D. Dreyer, R. Braunstingl, and I. Koglbauer, What's real about virtual reality flight simulation? Aviation: Psychol. Appl. Hum. Factors 8 (2018), no. 1, 22-34. https://doi.org/10.1027/2192-0923/a000134
  4. J. L. Olson, D. M. Krum, E. A. Suma, and M. Bolas, A design for a smartphone-based head mounted display, (IEEE Virtual Reality Conference, Singapore), 2011, pp. 233-234.
  5. A. Mehrfard, J. Fotouhi, G. Taylor, T. Forster, N. Navab, and B. Fuerst, A comparative analysis of virtual reality headmounted display systems, ArXiv Preprint, 2019, arXiv: 1912.02913.
  6. Eric Howlett's Leep VR. Available from: http://www.leepvr.com/ [last accessed Jan 2023].
  7. D. Kaminska, T. Sapinski, S. Wiak, T. Tikk, R. E. Haamer, E. Avots, and G. Anbarjafari, Virtual reality and its applications in education: survey, Inform 10 (2019), no. 10, 318.
  8. S. Philippe, A. D. Souchet, P. Lameras, P. Petridis, J. Caporal, G. Coldeboeuf, and H. Duzan, Multimodal teaching, learning and training in virtual reality: a review and case study, Virtual Real. Intell. Hardw. 2 (2020), no. 5, 421-442. https://doi.org/10.1016/j.vrih.2020.07.008
  9. A. Plopski, T. Hirzle, N. Norouzi, L. Qian, G. Bruder, and T. Langlotz, The eye in extended reality: a survey on gaze interaction and eye tracking in head-worn extended reality, ACM Comput. Surv. 55 (2022), no. 3, 1-39.
  10. X. Meng, R. Du, M. Zwicker, and A. Varshney, Kernel foveated rendering, Proc. ACM Comput. Graph. Interact. Tech. 1 (2018), no. 1, 1-20.
  11. L. Gu, D. Cheng, and Y. Wang, Design of an immersive head mounted display with coaxial catadioptric optics, (Proceedings of SPIE 10676, Digital Optics for Immersive Displays, Strasbourg, France), 2018, pp. 353-358.
  12. Y. Geng, J. Gollier, B. Wheelwright, F. Peng, Y. Sulai, B. Lewis, N. Chan, W. S. T. Lam, A. Fix, D. Lanman, Y. Fu, A. Sohn, B. Bryars, N. Cardenas, Y. Yoon, and S. McEldowney, Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light, (Proceedings of SPIE 10676, Digital Optics for Immersive Displays, Strasbourg, France), 2018, pp. 19-35.
  13. K. Yin, Z. He, J. Xiong, J. Zou, K. Li, and S. T. Wu, Virtual reality and augmented reality displays: advances and future perspectives, J. Phys. Photonics 3 (2021), no. 2, DOI 10.1088/2515-7647/abf02e.
  14. J. Ratcliff, A. Supikov, S. Alfaro, and R. Azuma, ThinVR: VR displays with wide FOV in a compact form factor, (Proceedings of ACM SIGGRAPH 2020 Emerging Technologies, Association for Computing Machinery, New York, NY, USA), 2020, pp. 1-2.
  15. D. Lanman, and D. Luebke, Near-eye light field displays, (Proceedings of ACM SIGGRAPH 2013 Emerging Technologies, Association for Computing Machinery, New York, NY, USA), 2013, pp. 1-10.
  16. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources, ACM Trans. Graph. 33 (2014), 1-11. https://doi.org/10.1145/2601097.2601141
  17. A. Maimone and J. Wang, Holographic optics for thin and lightweight virtual reality, ACM Trans. Graph. 39 (2020), no. 4, DOI 10.1145/3386569.3392416.
  18. Size Korea Project. Available from: https://sizekorea.kr/ [last accessed Jan 2023].
  19. Y. Chang, H. M. Wu, and Y. F. Lin, The axial misalignment between ocular lens and cornea observed by MRI (I)-at fixed accommodative state, Vision Res. 47 (2007), no. 1, 71-84. https://doi.org/10.1016/j.visres.2006.09.018
  20. Human eye optical properties. Available from: https://www.telescope-optics.oeye_aberrations.htm [last accessed Jan 2023].
  21. A. Abass, R. Vinciguerra, B. T. Lopes, F. J. Bao, P. Vinciguerra, R. Ambrosio Jr., and A. Elsheikh, Positions of ocular geometrical and visual axes in Brazilian, Chinese and Italian populations, Curr. Eye Res. 43 (2018), no. 11, 1404-1414. https://doi.org/10.1080/02713683.2018.1500609
  22. H. Lee, U. Y. Yang, and H. J. Choi, Analysis of the design parameters for a light-field near-eye display based on a pinhole array, Curr. Opt. Photonics 4 (2020), no. 2, 121-126.
  23. What to know about normal pupil size. Available from: https://www.webmd.com/eye-health/what-to-know-normalpupil-size [last accessed Jan 2023].
  24. J. La Russa, Infinite optical image-forming apparatus, US Patent No. 3,443,858, (1966).
  25. T. L. Wong, Z. Yun, G. Ambur, and J. Etter, Folded optics with birefringent reflective polarizers, (Proceedings of SPIE 10335, Digital Optical Technologies, Munich, Germany), 2017, pp. 84-90.
  26. P. J. Rogers, Compact viewing optics using polarization, (Proceedings of SPIE 0655, Optical System Design, Analysis, Production for Advanced Technology Systems), 1986.
  27. B. Kneer, P. Graupner, R. Garreis, R. Klasges, and H. Feldmann, Catadioptric lens design: the breakthrough to hyper-NA optics, (Proceedings of SPIE 6154, Optical Microlithography XIX, San Jose, CA, USA), 2006, pp. 692-701.
  28. X. Peng, Z. Gao, Y. Ding, D. Zhao, and X. Chi, Study of ghost image suppression in polarized catadioptric virtual reality optical systems, Virtual Real. Intell. Hardw. 2 (2020), no. 1, 70-78. https://doi.org/10.1016/j.vrih.2019.10.005
  29. O. Cakmakci, Y. Qin, P. Bosel, and G. Wetzstein, Holographic pancake optics for thin and lightweight optical see-through augmented reality, Opt. Express 29 (2021), no. 22, 35206-35215. https://doi.org/10.1364/OE.439585
  30. D. Cheng, Q. Hou, Y. Li, T. Zhang, D. Li, Y. Huang, Y. Liu, Q. Wang, W. Hou, T. Yang, Z. Feng, and Y. Wang, Optical design and pupil swim analysis of a compact, large EPD and immersive VR head mounted display, Opt. Express 30 (2022), no. 5, 6584-6602. https://doi.org/10.1364/OE.452747
  31. K. Bang, Y. Jo, M. Chae, and B. Lee, Lenslet VR: thin, flat and wide-FOV virtual reality display using Fresnel lens and lenslet array, IEEE Trans. Vis. Comput. Graph. 27 (2021), no. 5, 2545-2554. https://doi.org/10.1109/TVCG.2021.3067758
  32. A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, Towards foveated rendering for gaze-tracked virtual reality, ACM Trans. Graph. 35 (2016), no. 6, 1-12.
  33. X. Hu and H. Hua, High-resolution optical see-through multifocal- plane head-mounted display using freeform optics, Opt. Express 22 (2014), no. 11, 13896-13903. https://doi.org/10.1364/OE.22.013896