• Title/Summary/Keyword: slim optics

Search Result 5, Processing Time 0.018 seconds

Compact near-eye display for firefighter's self-contained breathing apparatus

  • Ungyeon Yang
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1046-1055
    • /
    • 2023
  • We introduce a display for virtual-reality (VR) fire training. Firefighters prefer to wear and operate a real breathing apparatus while experiencing full visual immersion in a VR fire space. Thus, we used a thin head-mounted display (HMD) with a light field and folded optical system, aiming to both minimize the volume for integration in front of the face into a breathing apparatus and maintain adequate visibility, including a wide viewing angle and resolution similar to that of commercial displays. We developed the optical system testing modules and prototypes of the integrated breathing apparatus. Through iterative testing, the thickness of the output optical module in front of the eyes was reduced from 50 mm to 60 mm to less than 20 mm while maintaining a viewing angle of 103°. In addition, the resolution and image quality degradation of the light field in the display was mitigated. Hence, we obtained a display with a structure consistent with the needs of firefighters in the field. In future work, we will conduct user evaluation regarding fire scene reproducibility by combining immersive VR fire training and real firefighting equipment.

Optical System Design for Projection TV using Micro Display (마이크로 디스플레이를 이용한 프로젝션 TV용 광학계 설계)

  • Park, Sung-Chan;Lee, Jung-Yul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • This paper discusses the optical system design for projection TV using LCOS type micro display, which provides the high resolution, slim depth, and a large screen of more than 60 inches. We analyzed the relationship between the illumination system, projection lens, color separation & recombination system, and micro display. From this quantitative analysis, the starting data for the optimum light engine was defined, and all optical systems were designed by an optimization process. Three RGB panels were proposed for a high luminence system, and the four prisms symmetrically located make equal optical path lengths for the RGB rays. This color separation & recombination system enables the a compact illumination system. Also, in order to the slim light engine with high resolution, the folded projection lens system was designed by inserting a mirror between projection lenses.

Slim Mobile Lens Design Using a Hybrid Refractive/Diffractive Lens (굴절/회절 하이브리드 렌즈 적용 슬림 모바일 렌즈 설계)

  • Park, Yong Chul;Joo, Ji Yong;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.281-289
    • /
    • 2020
  • This paper reports a slim mobile lens design using a hybrid refractive/diffractive optical element. Conventionally a wide field of view (FOV) camera-lens design adopts a retrofocus type having a negative (-) lens at the forefront, so that it improves in imaging performance over the wide FOV, but with the sacrifice of longer total track length (TTL). However, we chose a telephoto type as a baseline design layout having a positive (+) lens at the forefront, to achieving slimness, based on the specification analysis of 23 reported optical designs. Following preliminary optimization of a baseline design and aberration analysis based on Zernike-polynomial decomposition, we applied a hybrid refractive/diffractive element to effectively reduce the residual chromatic spherical aberration. The optimized optical design consists of 6 optical elements, including one hybrid element. It results in a very slim telephoto ratio of 1.7, having an f-number of 2.0, FOV of 90°, effective focal length of 2.23 mm, and TTL of 3.7 mm. Compared to a comparable conventional lens design with no hybrid elements, the hybrid design improved the value of the modulation transfer function (MTF) at a spatial frequency of 180 cycles/mm from 63% to 71-73% at zero field (0 F), and about 2-3% at 0.5, 0.7, and 0.9 fields. It was also found that a design with a hybrid lens with only two diffraction zones at the stop achieved the same performance improvement.

A Study on an Integrated Light Guide Plate (광학시트를 제거한 복합 도광판 설계 연구)

  • Lee, Yun-Mi;Lee, Jun-Ho;Jeon, Eun-Chae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • An integrated light guide plate (LGP) was designed for liquid crystal displays (LCD) without using prism and diffuser sheets. The integrated LGP is textured with micro-patterns on both the top and bottom surfaces. The textures effectively substitute for a single prism-sheet and a diffuser sheet in LCD displays without decreasing the brightness and uniformity. A LCD display with our integrated light guide is simulated to give average luminance of 4560 cd/$m^2$, luminance uniformity of 83% horizontal viewing angle $60^{\circ}$ and vertical viewing angle $56^{\circ}$. Therefore an ultra thin (slim) back light unit can be constructed with fewer optical sheets, which reduces the manufacturing cost and so improves price competitiveness.

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.