DOI QR코드

DOI QR Code

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chul Woong Joo (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Byoung-Hwa Kwon (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chan-mo Kang (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Sukyung Choi (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Jin Wook Sin (ICT Creativity Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2022.07.14
  • Accepted : 2022.10.17
  • Published : 2023.12.10

Abstract

The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Keywords

Acknowledgement

Korea Evaluation Institute of Industrial Technology (KEIT), Grant/Award Numbers: 20012560 and 10079671.

References

  1. C. Kang and H. Lee, Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications, J. Inf. Disp. 23 (2022), 19-32. https://doi.org/10.1080/15980316.2021.1917461
  2. D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater. 23 (2011), 1482-1513. https://doi.org/10.1002/adma.201003188
  3. W. Cao, J. Li, H. Chen, and J. Xue, Transparent electrodes for organic optoelectronic devices: a review, J. Photon. Energy 4 (2014), 040990.
  4. M. Morales-Masis, S. D. Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, Transparent electrodes for efficient optoelectronics, Adv. Electron. Mater. 3 (2017), 1600529.
  5. Y. -G. Bi, Y. -F. Liu, X. -L. Zhang, D. Yin, W. -Q. Wang, J. Feng, and H. -B. Sun, Ultrathin metalfilms as the transparent electrode in ITO-free organic optoelectronic devices, Adv. Opt. Mater. 7 (2019), 1800778.
  6. H. Cho, C. W. Joo, S. Choi, C. M. Kang, B. H. Kwon, J. W. Shin, K. Kim, D. H. Ahn, N. S. Cho, and G. H. Kim, Highly conductive and transparent thin metal layer for reducing microcavity effect in top-emitting white organic light-emitting diode, Org. Electron. 106 (2022), 106537.
  7. H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Riess, Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling, Appl. Phys. Lett. 82 (2003), 466-468. https://doi.org/10.1063/1.1537052
  8. C. -C. Wu, C. -L. Lin, P. -Y. Hsieh, and H. -H. Chiang, Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices, Appl. Phys. Lett. 84 (2004), 3966-3968. https://doi.org/10.1063/1.1745107
  9. Q. Huang, K. Walzer, M. Pfeiffer, K. Leo, M. Hofmann, and T. Stubinger, Performance improvement of top-emitting organic light-emitting diodes by an organic capping layer: an experimental study, J. Appl. Phys. 100 (2006), 064507.
  10. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem, and K. Leo, Top-emitting organic light-emitting diodes: influence of cavity design, Appl. Phys. Lett. 97 (2010), 253308.
  11. H. Cho, C. W. Joo, S. Choi, C. M. Kang, G. H. Kim, J. W. Shin, B. H. Kwon, H. Lee, C. W. Byun, and N. S. Cho, Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut, ETRI j. 43 (2021), 1093-1102. https://doi.org/10.4218/etrij.2020-0321
  12. J. Park, J. -H. Lee, J. Lee, and H. Cho, Effect of a p-doped hole transport and charge generation layer on single and two-tandem blue top-emitting organic light-emitting diodes, J. Inf. Disp. 22 (2021), 107-113. https://doi.org/10.1080/15980316.2020.1863273
  13. M. Wu, S. Yu, L. He, L. Yang, and W. Zhang, High quality transparent conductive Ag-based barium stannate multilayer flexible thin films, Sci. Rep. 7 (2017), 103.
  14. L. Peres, A. Bou, D. Barakel, and P. Torchio, ZnS|ag|TiO2multilayer electrodes with broadband transparency for thin film solar cells, RSC Adv. 6 (2016), 61057-61063. https://doi.org/10.1039/C6RA08638A
  15. S. -K. Kwon, E. -H. Lee, K. -S. Kim, H. -C. Choi, M. J. Park, S. K. Kim, R. Pode, and J. H. Kwon, Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode, Opt. Express 25 (2017), 29906-29915. https://doi.org/10.1364/OE.25.029906
  16. X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, The design of ZnS/Ag/ZnS transparent conductive multilayer films, Thin Solid Films 441 (2003), 200-206. https://doi.org/10.1016/S0040-6090(03)00141-X
  17. J. -H. Lee, C. -H. Chen, P. -H. Lee, H. -Y. Lin, M. K. Leung, T. L. Chiu, and C. F. Lin, Blue organic light-emitting diodes: current status, challenges, and future outlook, J. Mater. Chem. C 7 (2019), 5874-5888. https://doi.org/10.1039/C9TC00204A
  18. C. Ji, D. Liu, C. Zhang, and L. Jay Guo, Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%, Nat. Commun. 11 (2020), 3367.
  19. W. Ren, K. R. Son, T. H. Park, V. Murugadoss, and T. G. Kim, Manipulation of blue TADF top-emission OLEDs by the first-order optical cavity design: toward a highly pure blue emission and balanced charge transport, Photon Res 9 (2021), no. 8, 1502-1512. https://doi.org/10.1364/PRJ.432042
  20. E. Kim, J. Chung, J. Lee, H. Cho, N. S. Cho, and S. Yoo, A systematic approach to reducing angular color shift in cavity-based organic light-emitting diodes, Org. Electron. 48 (2017), 348-356. https://doi.org/10.1016/j.orgel.2017.06.030