DOI QR코드

DOI QR Code

Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method

스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구

  • Jongyun Choi (Department of Mechanical Engineering, Hannam University) ;
  • Kiwoong Kim (Department of Mechanical Engineering, Hannam University)
  • Received : 2023.09.07
  • Accepted : 2023.10.06
  • Published : 2023.11.30

Abstract

This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.

Keywords

Acknowledgement

이 논문은 2022학년도 한남대학교 학술연구비 지원에 의하여 연구되었음.

References

  1. Liu, H., Zhang, L., Huang, J., Mao, J., Chen, Z., Mao, Q., Ge, M., and Lai, Y., 2022, "Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications," Advances in Colloid and Interface Science, 300, 102584.
  2. Kwon, J. S., 2019, "Opto-electrokinetic technique for microfluidic manipulation of microorganism," Journal of the Korean Society of Visualization, 17(1), 69-77. https://doi.org/10.5407/JKSV.2019.17.1.069
  3. Cui, H., Wang, W., Shi, L., Song, W., and Wang, S., 2020, "Superwettable surface engineering in controlling cell adhesion for emerging bioapplications," Small Methods, 4(12), 2000573.
  4. Yang, C., Zeng, Q., Huang, J., and Guo, Z., 2022, "Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review," Advances in Colloid and Interface Science, 306, 102724.
  5. Su, X., Li, H., Lai, X., Zhang, L., Liao, X., Wang, J., Zeng, X., and Li, G., 2018, "Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation," ACS Applied Materials & Interfaces, 10(4), 4213-4221. https://doi.org/10.1021/acsami.7b15909
  6. Park, S. Y., and Chiou, P. Y., 2011, "Light-driven droplet manipulation technologies for lab-on-a-chip applications," Advances in OptoElectronics.
  7. Liu, Z., Yang, X., Pang, G., Zhang, F., Han, Y., Wang, X., Xue, L., and Wang, S., 2019, "Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations," Surface and Coatings Technology, 375, 527-533. https://doi.org/10.1016/j.surfcoat.2019.07.041
  8. Ben, S., Zhou, T., Ma, H., Yao, J., Ning, Y., Tian, D., Jiang, L., and Zhang, D., 2019, "Multifunctional magnetocontrollable superwettable- microcilia surface for directional droplet manipulation," Advanced Science, 6(17), 1900834.
  9. Gupta, P., Vermani, K., and Garg, S., 2002, "Hydrogels: from controlled release to pH-responsive drug delivery," Drug Discovery Today, 7(10), 569-579. https://doi.org/10.1016/S1359-6446(02)02255-9
  10. Wang, L., Gao, C., Hou, Y., Zheng, Y., Jiang, L., and Li, X., 2016, "Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface," Journal of Materials Chemistry A, 4(47), 18289-18293. https://doi.org/10.1039/C6TA08333A
  11. Kim, J. H., Kang, S. M., Lee, B. J., Ko, H., Bae, W. G., Suh, K. Y., Jeong, H. E., and Yang, P., 2015, "Remote manipulation of droplets on a flexible magnetically responsive film," Scientific Reports, 5(1), 17843.
  12. Yang, C., Wu, L., Li, G., and Zhang, L., 2018, "Magnetically responsive superhydrophobic surface: in situ reversible switching of water droplet wettability and adhesion for droplet manipulation," ACS Applied Materials & Interfaces, 10(23), 20150-20158. https://doi.org/10.1021/acsami.8b04190
  13. Lai, Y., Gao, X., Zhuang, H., Huang, J., Lin, C., and Jiang, L., 2009, "Designing superhydrophobic porous nanostructures with tunable water adhesion," Advanced Materials, 21(37), 3799-3803. https://doi.org/10.1002/adma.200900686
  14. Ko, T. J., Her, E. K., Shin, B., Kim, H. Y., Lee, K. R., Hong, B. K., Moon, M. W., and Kim, D. S., 2012, "Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures," Carbon, 50(14), 5085-5092. https://doi.org/10.1016/j.carbon.2012.06.048
  15. Atthi, N., Dielen, M., Sripumkhai, W., Pattamang, P., Meananeatra, R., Saengdee, P., and Ter Meulen, J. M., 2021, "Fabrication of high aspect ratio micro-structures with superhydrophobic and oleophobic properties by using large-area roll-to-plate nanoimprint lithography," Nanomaterials, 11(2), 339.
  16. Chen, G., Dai, Z., Li, S., Huang, Y., Xu, Y., She, J., Zhou, B., and Zhou, B., 2021, "Magnetically responsive film decorated with microcilia for robust and controllable manipulation of droplets," ACS Applied Materials & Interfaces, 13(1), 1754-1765. https://doi.org/10.1021/acsami.0c16262
  17. Eddings, M. A., Johnson, M. A., and Gale, B. K., 2008, "Determining the optimal PDMS-PDMS bonding technique for microfluidic devices," Journal of Micromechanics and Microengineering, 18(6), 067001.
  18. Wang, Q., Sun, G., Tong, Q., Yang, W., and Hao, W., 2021, "Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications," Chemical Engineering Journal, 426, 130829.
  19. Jeong, H. E., Lee, S. H., Kim, P., Suh, Y. K., 2007, "Capillary-driven rigiflex lithography for fabricating high aspect-ratio polymer nanostructures," Journal of the Korean Society of Visualization, 5(1), 3-8. https://doi.org/10.5407/JKSV.2007.5.1.003
  20. Kim, H. W., and Park, J., 2020, "On-demand acoustofluidic droplet generation with tunable droplet volume," Journal of the Korean Society of Visualization, 18(2), 46-50
  21. Park, K., Park, J., Jung, J. H., Destgeer, G., Ahmed, H., Ahmad, R., and Sung, H. J., 2017, "In-droplet preconcentration of microparticles using surface acoustic wave," Journal of the Korean Society of Visualization, 15(1), 47-52. https://doi.org/10.5407/jksv.2017.15.1.047
  22. Jeong, E. H., Kim, I., Go, J. S., and Kim, K. C., 2006, "Fabrication of functional microcapsule for drug delivery by using droplet phase flow," Journal of the Korean Society of Visualization, 4(2), 6-10.