Acknowledgement
본 연구는 2021년 한국연구재단 (과학기술정보통신부 (과제번호 : 2020R1C1C1011232)의 지원에 의하여 수행되었음.
References
- Gent, R.W., Dart, N.P. and Cansdale, J.T., 2000, "Aircraft icing", Philosophical Transactions of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, Vol. 358(1776), pp. 2873-2911.2) Jakob, M., "Heat Transfer," Vol. I, Chap 29, Wiley, 1949.
- Frohboese, P. and Anders, A. 2007, "Effects of Icing on Wind Turbine Fatigue Loads", J. Phys.: Conf. Ser., Vol. 75, 012061.
- Andersson, L. O., Golander, C. G. and Persson, S., 1994, "Ice adhesion to rubber materials", Journal of Adhesion Science and Technology, Vol. 8 (2), pp. 117-132. https://doi.org/10.1163/156856194X00104
- Dalili, N., Edrisy, A. and Carriveau, R., 2009, "A review of surface engineering issues critical to wind turbine performance", Renewable and Sustainable Energy Reviews, Vol. 13 (2), pp. 428-438. https://doi.org/10.1016/j.rser.2007.11.009
- Fillion, R.M., Riahi, A.R. and Edrisy, A., 2014, "A review of icing prevention in photovoltaic devices by surface engineering", Renewable and Sustainable Energy Reviews, Vol. 32, pp. 797-809. https://doi.org/10.1016/j.rser.2014.01.015
- Li, W., Zhan, Y. and Yu, S., 2021, "Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives", Progress in Organic Coatings, Vol. 152, 106117.
- M.J. Kreder et al., 2016, "Design of anti-icing surfaces: smooth, textured or slippery?", Nat Rev Mater Vol. 1 (1), 15003.
- Wang, L., Gong, Q., Zhan, S., Jiang, L. and Zheng, Y., "Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface", Advanced Materials, Vol. 28, pp. 7729-7735.
- R. Zhang et al., 2018, "Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature", International Journal of Heat and Mass Transfer, Vol. 122, pp. 395-402. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.076
- H. Wang et al., 2019, "One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function", ACS Appl. Mater. Interfaces, Vol. 11 (28), pp. 25586-25594. https://doi.org/10.1021/acsami.9b06865
- X. Zhan et al., 2014, "A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties", J. Mater. Chem. A, Vol. 2 (24), pp. 9390-9399. https://doi.org/10.1039/C4TA00634H
- B. Wu et al., 2021, "A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances", Journal of Colloid and Interface Science, Vol. 590, pp. 301-310. https://doi.org/10.1016/j.jcis.2021.01.054
- L. Cao et al., 2009, "Anti-Icing Superhydrophobic Coatings", Langmuir Vol. 25 (21), pp. 12444-12448. https://doi.org/10.1021/la902882b
- D. Ge et al., 2014, "Spray coating of superhydrophobic and angle-independent coloured films", Chem. Commun, Vol. 50 (19), 2469.
- S. Kim et al., 2020, "Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces", J Mech Sci Technol, Vol. 34 (1), pp. 219-228. https://doi.org/10.1007/s12206-019-1223-z
- Ozbay, S., Yuceel, C. and Erbil, H.Y., 2015, "Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid", ACS Appl. Mater. Interfaces, Vol. 7 (39), pp. 22067-22077. https://doi.org/10.1021/acsami.5b07265
- Work, A. and Lian, Y., 2018, "A critical review of the measurement of ice adhesion to solid substrates", Progress in Aerospace Sciences, Vol. 98, pp. 1-26. https://doi.org/10.1016/j.paerosci.2018.03.001
- A.J. Meuler et al., 2010, "Relationships between Water Wettability and Ice Adhesion", ACS Appl. Mater. Interfaces, Vol. 2 (11), pp.3100-3110. https://doi.org/10.1021/am1006035
- S.H. Kim et al., 2019, "Leidenfrost point and droplet dynamics on heated micropillar array surface", International Journal of Heat and Mass Transfer, Vol. 139, pp. 1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.093
- R. Zhang et al., 2018, "Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature", International Journal of Heat and Mass Transfer, Vol. 122, pp. 395-402 https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.076