DOI QR코드

DOI QR Code

Droplet anti icing visualization research through hydrophobic variation of surface structure

소수성 표면의 형상 변화를 통한 액적의 방빙 가시화 연구

  • Jinwook Choi (Department of Precision Mechanical Engineering, Kyungpook National University) ;
  • Wang Tao (College of Mechanical & Electric Engineering, Beijing Chemical Engineering University) ;
  • Seolha Kim (Department of Precision Mechanical Engineering, Kyungpook National University)
  • Received : 2023.08.02
  • Accepted : 2023.09.08
  • Published : 2023.11.30

Abstract

In this study, we investigated the freezing delay time on surfaces with different patterns under -30° conditions through visualization experiments. Among various pattern structures, we fabricated the shape and surface of liquid from the spacing using circular filaments and hole structures. Additionally, using a high-speed camera, we visualized the freezing scenes, enabling us to obtain freezing images and measure the freezing time of the liquid. For each structure, the contact angle and solid fraction of the surface varied. We observed that the freezing delay time was longest when the contact angle was largest and the solid fraction was smallest within the experimental results. We analyzed the variation in anti-icing time using the heat exchange equation between the patterned surface and the liquid.

Keywords

Acknowledgement

본 연구는 2021년 한국연구재단 (과학기술정보통신부 (과제번호 : 2020R1C1C1011232)의 지원에 의하여 수행되었음.

References

  1. Gent, R.W., Dart, N.P. and Cansdale, J.T., 2000, "Aircraft icing", Philosophical Transactions of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, Vol. 358(1776), pp. 2873-2911.2) Jakob, M., "Heat Transfer," Vol. I, Chap 29, Wiley, 1949.
  2. Frohboese, P. and Anders, A. 2007, "Effects of Icing on Wind Turbine Fatigue Loads", J. Phys.: Conf. Ser., Vol. 75, 012061.
  3. Andersson, L. O., Golander, C. G. and Persson, S., 1994, "Ice adhesion to rubber materials", Journal of Adhesion Science and Technology, Vol. 8 (2), pp. 117-132. https://doi.org/10.1163/156856194X00104
  4. Dalili, N., Edrisy, A. and Carriveau, R., 2009, "A review of surface engineering issues critical to wind turbine performance", Renewable and Sustainable Energy Reviews, Vol. 13 (2), pp. 428-438. https://doi.org/10.1016/j.rser.2007.11.009
  5. Fillion, R.M., Riahi, A.R. and Edrisy, A., 2014, "A review of icing prevention in photovoltaic devices by surface engineering", Renewable and Sustainable Energy Reviews, Vol. 32, pp. 797-809. https://doi.org/10.1016/j.rser.2014.01.015
  6. Li, W., Zhan, Y. and Yu, S., 2021, "Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives", Progress in Organic Coatings, Vol. 152, 106117.
  7. M.J. Kreder et al., 2016, "Design of anti-icing surfaces: smooth, textured or slippery?", Nat Rev Mater Vol. 1 (1), 15003.
  8. Wang, L., Gong, Q., Zhan, S., Jiang, L. and Zheng, Y., "Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface", Advanced Materials, Vol. 28, pp. 7729-7735.
  9. R. Zhang et al., 2018, "Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature", International Journal of Heat and Mass Transfer, Vol. 122, pp. 395-402. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.076
  10. H. Wang et al., 2019, "One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function", ACS Appl. Mater. Interfaces, Vol. 11 (28), pp. 25586-25594. https://doi.org/10.1021/acsami.9b06865
  11. X. Zhan et al., 2014, "A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties", J. Mater. Chem. A, Vol. 2 (24), pp. 9390-9399. https://doi.org/10.1039/C4TA00634H
  12. B. Wu et al., 2021, "A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances", Journal of Colloid and Interface Science, Vol. 590, pp. 301-310. https://doi.org/10.1016/j.jcis.2021.01.054
  13. L. Cao et al., 2009, "Anti-Icing Superhydrophobic Coatings", Langmuir Vol. 25 (21), pp. 12444-12448. https://doi.org/10.1021/la902882b
  14. D. Ge et al., 2014, "Spray coating of superhydrophobic and angle-independent coloured films", Chem. Commun, Vol. 50 (19), 2469.
  15. S. Kim et al., 2020, "Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces", J Mech Sci Technol, Vol. 34 (1), pp. 219-228. https://doi.org/10.1007/s12206-019-1223-z
  16. Ozbay, S., Yuceel, C. and Erbil, H.Y., 2015, "Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid", ACS Appl. Mater. Interfaces, Vol. 7 (39), pp. 22067-22077. https://doi.org/10.1021/acsami.5b07265
  17. Work, A. and Lian, Y., 2018, "A critical review of the measurement of ice adhesion to solid substrates", Progress in Aerospace Sciences, Vol. 98, pp. 1-26. https://doi.org/10.1016/j.paerosci.2018.03.001
  18. A.J. Meuler et al., 2010, "Relationships between Water Wettability and Ice Adhesion", ACS Appl. Mater. Interfaces, Vol. 2 (11), pp.3100-3110. https://doi.org/10.1021/am1006035
  19. S.H. Kim et al., 2019, "Leidenfrost point and droplet dynamics on heated micropillar array surface", International Journal of Heat and Mass Transfer, Vol. 139, pp. 1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.093
  20. R. Zhang et al., 2018, "Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature", International Journal of Heat and Mass Transfer, Vol. 122, pp. 395-402 https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.076