• Title/Summary/Keyword: 자체 조립된 마이크로 구조

Search Result 2, Processing Time 0.017 seconds

Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method (스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구)

  • Jongyun Choi;Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.

Design and Fabrication of Ka-Band Microstrip to Waveguide Transitions Using E-Plane Probes (E-평면 프로브를 이용한 Ka 대역 마이크로스트립-도파관 변환기의 설계 및 제작)

  • Shin, Im-Hyu;Kim, Choul-Young;Lee, Man-Hee;Joo, Ji-Han;Lee, Sang-Joo;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • In this paper, two kinds of E-plane microstrip-to-waveguide transitions are optimally designed and fabricated for combining output power from multiple small-power amplifiers in a WR-28 waveguide because conventional K connectors cause unnecessary insertion loss and adaptor loss. The transition design is based on target specifications such as a center frequency of 35 GHz, bandwidth of ${\pm}500MHz$, 0.1 dB insertion loss and 20 dB return loss. Performance variation caused by mechanical tolerance and assembly deviation is fully evaluated by three dimensional electromagnetic simulation. The fabricated back-to-back transitions with 16 mm and 26.57 mm interstage microstrip lines show insertion loss per transition of ~0.1 dB at 35 GHz and average 0.2 dB over full Ka band. Also the back-to-back transition shows return loss greater than 15 dB, which implies that the transition itself has return loss better than 20 dB.