DOI QR코드

DOI QR Code

Transformative Technology Adoption and Firm Productivity: Illusionary Revolution or Guaranteed Innovation?

  • Sungho Rho (School of International Studies, Sejong University) ;
  • Sehwan Oh (School of Business Administration, Kyungpook National University)
  • Received : 2022.08.05
  • Accepted : 2022.11.02
  • Published : 2023.03.31

Abstract

This study examines the impact of strategic technological innovations (e.g., adoption of fourth industrial revolution (4IR) technologies) on firms' productivity. To estimate the heterogeneous effects of innovation efforts on firms' labor productivity, this paper employs a quantile regression model and calculates higher moments of the empirical distributions. This study uses data from 11,654 Korean firms that responded to surveys in 2017 and 2018, comprising 23,308 observations. Our empirical results find that 4IR technology adoption has a significant impact on labor productivity for firms across all quantiles, while the estimates of 4IR technology adoption coefficient on labor productivity are much larger in upper quantiles. This estimated impact of adopting 4IR technology on labor productivity at the upper quantile differs compared to the estimated impact of another innovation strategy, or internal R&D. Notably, adopting 4IR technology increases the median labor productivity of firms and the kurtosis of its distribution. Thus, firms that adopted 4IR technology show labor productivity gains more consistently than those that did not, with few outliers.

Keywords

References

  1. Aghion, P., and Howitt, P. (1998). On the macroeconomic effects of major technological change. Annales d'Economie et de Statistique, (49/50), 121-144. https://doi.org/10.2307/20076110
  2. Aghion, P., and Tirole, J. (1994). The management of innovation. Quarterly Journal of Economics, 109(4), 1185-1209. https://doi.org/10.2307/2118360
  3. Alguacil, M., Lo Turco, A., and Martinez-Zarzoso, I. (2022). Robot adoption and export performance: Firm-level evidence from Spain. Economic Modelling, 114, 105912. https://doi.org/10.1016/j.econmod.2022.105912
  4. Barua, A., Kriebel, C. H., and Mukhopadhyay, T. (1995). Information technologies and business value: An analytic and empirical investigation. Information Systems Research, 6(1), 3-23. https://doi.org/10.1287/isre.6.1.3
  5. Belderbos, R., Carree, M., and Lokshin, B. (2004). Cooperative R&D and firm performance. Research Policy, 33(10), 1477-1492. https://doi.org/10.1016/j.respol.2004.07.003
  6. Beneito, P. (2006). The innovative performance of in-house and contracted R&D in terms of patents and utility models. Research Policy, 35(4), 502-517. https://doi.org/10.1016/j.respol.2006.01.007
  7. Benhabib, J., and Spiegel, M. M. (2005). Chap. 13. Human capital and technology diffusion. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth (1st ed,, Vol. 1, pp. 935-966). Elsevier.
  8. Bloom, N., Brynjolfsson, E., Foster, L., Jarmin, R., Patnaik, M., Saporta-Eksten, I., and Van Reenen, J. (2019). What drives differences in management practices? American Economic Review, 109(5), 1648-1683. https://doi.org/10.1257/aer.20170491
  9. Bloom, N., Jones, C. I., Van Reenen, J., and Webb, M. (2017). Are ideas getting harder to find? NBER Working Paper 23782.
  10. Bloom, N., and Van Reenen, J. (2007). Measuring and explaining management practices across firms and countries. Quarterly Journal of Economics, 122(4), 1351-1408. https://doi.org/10.1162/qjec.2007.122.4.1351
  11. Bresnahan, T. F., Brynjolfsson, E., and Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm-level evidence. Quarterly Journal of Economics, 117(1), 339-376. https://doi.org/10.1162/003355302753399526
  12. Bresnahan, T. F., and Trajtenberg, M. (1995). General purpose technologies 'Engines of growth'? Journal of Econometrics, 65(1), 83-108. https://doi.org/10.1016/0304-4076(94)01598-T
  13. Brynjolfsson, E., and Hitt, L. (1996). Paradox lost? Firm-level evidence on the returns to information systems spending. Management Science, 42(4), 541-558.
  14. Brynjolfsson, E., and Hitt, L. M. (2003). Computing productivity: Firm-level evidence. Review of Economics and Statistics, 85(4), 793-808.
  15. Brynjolfsson, E., and McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133-139. https://doi.org/10.1257/aer.p20161016
  16. Brynjolfsson, E., Rock, D., and Syverson, C. (2018). Chap. 1. Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence (pp. 23-60). University of Chicago Press. https://doi.org/10.7208/9780226613475-003
  17. Brynjolfsson, E., Rock, D., and Syverson, C. (2021). The productivity J-curve: How intangibles complement general purpose technologies. SSRN Electronic Journal, 13(1), 333-372. https://doi.org/10.2139/ssrn.3346739
  18. Brynjolfsson, E., and Yang, S. (1996). Information technology and productivity: A review of the literature. Advances in Computers, 43, 179-214. https://doi.org/10.1016/S0065-2458(08)60644-0
  19. Buchinsky, M. (1998). Recent advances in quantile regression models: A practical guide for empirical research. Journal of Human Resources, 33(1), 88-126.
  20. Carlaw, K. I., and Lipsey, R. G. (2006). GPT-driven, endogenous growth. Economic Journal, 116(508), 155-174. https://doi.org/10.1111/j.1468-0297.2006.01051.x
  21. Coad, A. (2019). Persistent heterogeneity of R&D intensities within sectors: Evidence and policy implications. Research Policy, 48(1), 37-50. https://doi.org/10.1016/j. respol.2018.07.018
  22. Coad, A., and Rao, R. (2008). Innovation and firm growth in high-tech sectors: A quantile regression approach. Research Policy, 37(4), 633-648. https://doi.org/10.1016/j.respol.2008.01.003
  23. Cohen, W. M., and Klepper, S. (1992). The anatomy of industry R&D intensity distributions. American Economic Review, 82(4), 773-799.
  24. Cohen, W. M., and Levinthal, D. A. (1989). Innovation and learning: The two faces of R&D. Economic Journal, 99(397), 569-596. https://doi.org/10.2307/2233763
  25. Davies, S. W. (1979). Inter-firm diffusion of process innovations. European Economic Review, 12(4), 299-317. https://doi.org/10.1016/0014-2921(79)90023-0
  26. Draca, M., Sadun, R., and Van Reenen, J. (2007). Productivity and ICT: A review of the evidence. In R. Mansell, C. Avgerou, D. Quah, & R. Silverstone (Eds.), The Oxford handbook of information and communication technologies. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199548798.003.0005
  27. Fogel, R. W. (1962). A quantitative approach to the study of railroads in American economic growth: A report of some preliminary findings. Journal of Economic History, 22(2), 163-197. https://doi.org/10.1017/S0022050700062719
  28. Freeman, C. (2008). The ICT paradigm. In System of innovation: Selected essays in evolutionary economics (pp. 205-226). Edward Elgar Publishing.
  29. Freeman, C., and Perez, C. (2008). Structural crisis of adjustment, business cycle and investment behavior. In C. Freeman (Ed.), System of innovation: Selected essays in evolutionary economics (pp. 6-37). Edward Elgar Publishing.
  30. Ghasemaghaei, M., and Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of Business Research, 108, 147-162. https://doi.org/10.1016/j.jbusres.2019.09.062
  31. Gordon, R. J. (2014). The demise of US economic growth: Restatement, rebuttal, and reflections. NBER Working Paper No. 19895. National Bureau of Economic Research. https://doi.org/10.3386/w19895
  32. Gordon, R. J. (2018). Why has economic growth slowed when innovation appears to be accelerating? NBER Working Paper No. 24554. https://doi.org/10.3386/w24554
  33. Griliches, Z., and Mairesse, J. (1984). Productivity and R&D at the firm level. In Z. Griliches (Ed.), R&D, patents, and productivity (pp. 339-374). National Bureau of Economic Research, Inc.
  34. Helpman, E., and Trajtenberg, M. (1998a). A time to sow and a time to reap: Growth based on general purpose technologies. In E. Helpman (Ed.), General purpose technologies and economic growth (pp. 55-84). MA: MIT Press.
  35. Helpman, E., and Trajtenberg, M. (1998b). Diffusion of general purpose technologies. In E. Helpman (Ed.), General purpose technologies and economic growth (pp. 85-120). MA: MIT Press.
  36. Jensen, R. (1982). Adoption and diffusion of an innovation of uncertain profitability. Journal of Economic Theory, 27(1), 182-193. https://doi.org/10.1016/0022-0531(82)90021-7
  37. Koenker, R., and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15(4), 143-156. https://doi.org/10.1257/jep.15.4.143
  38. Lee, J., and Lee, K. (2020). Is the fourth industrial revolution a continuation of the third industrial revolution or something new under the sun?: Analyzing technological regimes using U.S. patent data. Industrial and Corporate Change, 30(1), 137-159. https://doi.org/10.1093/icc/dtaa059
  39. Lee, K., Wong, C. Y., Intarakumnerd, P., & Limapornvanich, C. (2020). Is the fourth Industrial Revolution a window of opportunity for upgrading or reinforcing the middle-income trap?: Asian model of development in Southeast Asia. Journal of Economic Policy Reform, 23(4), 408-425. https://doi.org/10.1080/17487870.2019.1565411
  40. Leiponen, A. (2005). Core complementarities of the corporation: Organization of an innovating firm. Managerial and Decision Economics, 26(6), 351-365. https://doi.org/10.1002/mde.1232
  41. Lokshin, B., Belderbos, R., and Carree, M. (2008). The productivity effects of internal and external R&D: Evidence from a dynamic panel data model. Oxford Bulletin of Economics and Statistics, 70(3), 399-413. https://doi.org/10.1111/j.1468-0084.2008.00503.x
  42. Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., and Dewhurst, M. (2017). Harnessing automation for a future that works. Retrieved from https://www.mckinsey.com/-/media/McKinsey/Featured%20Insights/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works_Full-report.pdf
  43. Mata, J., and Woerter, M. (2013). Risky innovation: The impact of internal and external R&D strategies upon the distribution of returns. Research Policy, 42(2), 495-501. https://doi.org/10.1016/j.respol.2012.08.004
  44. Mitchell, T., and Brynjolfsson, E. (2017). Track how technology is transforming work. Nature, 544(7650), 290-292. https://doi.org/10.1038/544290a
  45. Narula, R. (2001). Choosing between internal and non-internal R&D activities: Some technological and economic factors. Technology Analysis and Strategic Management, 13(3), 365-387. https://doi.org/10.1080/09537320120088183
  46. Nelson, R. R., Winter, S. G., and Schuette, H. L. (1976). Technical change in an evolutionary model. The Quarterly Journal of Economics, 90(1), 90-118. https://doi.org/10.2307/1886088
  47. Nuvolari, A. (2019). Understanding successive industrial revolutions: A "development block" approach. Environmental Innovation and Societal Transitions, 32, 33-44. https://doi.org/10.1016/j.eist.2018.11.002
  48. Nuvolari, A., and Verspagen, B. (2009). Technical choice, innovation, and British steam engineering, 1800-1850. Economic History Review, 62(3), 685-710. https://doi.org/10.1111/j.1468-0289.2009.00472.x
  49. Odagiri, H. (2003). Transaction costs and capabilities as determinants of the R&D boundaries of the firm: A case study of the ten largest pharmaceutical firms in Japan. Managerial and Decision Economics, 24(2-3), 187-211. https://doi.org/10.1002/mde.1083
  50. Oja, H. (1981). On location, scale, skewness and kurtosis of univariate distributions. Scandinavian Journal of Statistics, 8, 154-168.
  51. Oxley, J. E., and Sampson, R. C. (2004). The scope and governance of international R&D alliances. Strategic Management Journal, 25(89), 723-749. https://doi.org/10.1002/smj.391
  52. Pavitt, K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy, 13(6), 343-373.
  53. PricewaterhouseCoopers. (2021), The Essential Eight (Webpage), https://www.pwc.com/gx/en/issues/technology/essential-eight-technologies.html
  54. Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 2), S71-S102. https://doi.org/10.1086/261725
  55. Ruppert, D. (1987). What is kurtosis? An influence function approach. American Statistician, 41(1), 1-5. https://doi.org/10.1080/00031305.1987.10475431
  56. Sadun, R., Bloom, N., and Van Reenen, J. (2017). Why do we undervalue competent management? Great leadership and brilliant strategy won't succeed without operational excellence. Harvard Business Review, 95, 120-127.
  57. Schwab, K. (2016). The fourth Industrial Revolution. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
  58. Solow, R. (1987, July 12). We'd better watch out. New York Times Book Review, 36.
  59. Teece, D. J. (2018). Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Research Policy, 47(8), 1367-1387. https://doi.org/10.1016/j.respol.2017.01.015
  60. Verspagen, B. (2005). Innovation and economic growth. In J. Fagerberg, D. C. Mowery, and R. Nelson (Eds.), The Oxford handbook of innovation (pp. 487-513). https://doi.org/10.1093/oxfordhb/9780199286805.003.0018
  61. Yang, C. H. (2022). How artificial intelligence technology affects productivity and employment: Firm-level evidence from Taiwan. Research Policy, 51(6), 104536. https://doi.org/10.1016/j.respol.2022.104536
  62. Yang, J., Heinrich, T., Winkler, J., Lafond, F., Koutroumpis, P., and Farmer, J. D. (2019). Measuring productivity dispersion: A parametric approach using the Levy alpha-stable distribution. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3468301
  63. Yasar, M., Nelson, C. H., Rejesus, R. M., (2006). Productivity and exporting status of manufacturing firms: Evidence from quantile regressions. Weltwirtschaftliches Archiv, 142(4), 675-694.