DOI QR코드

DOI QR Code

An Efficient Resource Optimization Method for Provisioning on Flash Memory-Based Storage

플래시 메모리 기반 저장장치에서 프로비저닝을 위한 효율적인 자원 최적화 기법

  • Hyun-Seob Lee (Division of Computer Engineering, Baekseok University)
  • 이현섭 (백석대학교 컴퓨터공학부)
  • Received : 2023.06.30
  • Accepted : 2023.08.07
  • Published : 2023.08.31

Abstract

Recently, resource optimization research has been actively conducted in enterprises and data centers to manage the rapid growth of big data. In particular, thin provisioning, which allocates a large number of resources compared to fixedly allocated storage resources, has the effect of reducing initial costs, but as the number of resources actually used increases, the cost effectiveness decreases and the management cost for allocating resources increases. In this paper, we propose a technique that divides the physical blocks of flash memory into single-bit cells and multi-bit cells, formats them with a hybrid technique, and manages them by dividing frequently used hot data and infrequently used cold data. The proposed technique has the advantage that the physical and allocated resources are the same, such as thick provisioning, and can be used without additional cost increase, and the underutilized resources can be managed in multi-bit cell blocks, such as thin provisioning, which can allocate more resources than typical storage devices. Finally, we estimated the resource optimization effectiveness of the proposed technique through experiments based on simulations.

최근 엔터프라이즈 및 데이터 센터에서는 급격하게 증가하고 있는 빅데이터를 관리하기 위한 자원 최적화 연구가 활발하게 진행되고 있다. 특히 고정 할당된 저장 자원과 비교하여 많은 자원을 할당하는 씬프로비저닝은 초기 비용을 줄이는 효과가 있으나 실제로 사용하는 자원이 증가할수록 비용의 효과는 감소하고 자원을 할당하기 위한 관리 비용이 증가하는 문제가 있다. 본 논문에서는 플래시 메모리의 물리적 블록을 단일 비트 셀과 다중 비트 셀로 구분하여 하이브리드 기법으로 포맷하고, 빈번하게 사용하는 핫 데이터와 사용량이 적은 콜드 데이터를 구분하여 관리하는 기법을 제안한다. 제안하는 기법은 씩프로비저닝과 같이 물리적으로 자원과 할당된 자원이 동일하여 추가적인 비용 증가 없이 사용할 수 있으며, 사용량이 적은 자원을 다중 비트 셀 블록에 관리하여 씬프로비저닝과 같이 일반적인 저장장치보다 더 많은 자원을 할당할 수 있는 장점이 있다. 마지막으로 시뮬레이션을 기반으로 실험을 통해 제안하는 기법의 자원 최적화 효과를 측정하였다.

Keywords

Acknowledgement

This paper was supported by 2023 Baekseok University Research Fund

References

  1. H.Fenton and P.Kennedy, "ESXi on Arm on Pi and the Post-virtualized Datacenter," Running ESXi on a Raspberry Pi, pp.17-45, 2021. 
  2. L.Shrestha and N.J.Sheikh, "Multiperspective Assessment of Enterprise Data Storage Systems: Literature Review," 2022 Portland International Conference on Management of Engineering and Technology, pp.1-8, 2022. 
  3. Y.Zou, A.Awad and M.Lin, "DirectNVM: Hardware-accelerated NVMe SSDs for High-performance Embedded Computing," ACM Transactions on Embedded Computing Systems, Vol.21, No.9, pp.1-24, 2022.  https://doi.org/10.1145/3463911
  4. H.S.Lee, "Performance Analysis and Prediction Through Various Over-Provision on NAND Flash Memory based Storage," Journal of Digital Convergence, Vol.20, No.3, pp.343-348, 2022.  https://doi.org/10.14400/JDC.2022.20.3.343
  5. M.Kumar, S.C.Sharma, A.Goel and S.P.Singh, "A comprehensive survey for scheduling techniques in cloud computing," Journal of Network and Computer Applications, Vol.143, No.1, pp.1-33, 2019.  https://doi.org/10.1016/j.jnca.2019.06.006
  6. W.M.Danquah and D.T.Altilar, "Vehicular Cloud Resource Management, Issues and Challenges: A Survey," IEEE Access, vol.8, pp.180587-180607, 2020.  https://doi.org/10.1109/ACCESS.2020.3027637
  7. R.Liu, Z.Tan, L.Long, Y.Wu, Y.Tan and D.Liu, "Improving Fairness for SSD Devices through DRAM Over-Provisioning Cache Management," IEEE Transactions on Parallel and Distributed Systems, vol.33, no.10, pp.2444-2454, 2022.  https://doi.org/10.1109/TPDS.2022.3143295
  8. N.Y.Ahn and D.H.Lee, "Forensic Issues and Techniques to Improve Security in SSD With Flex Capacity Feature," IEEE Access, vol.9, pp.167067-167075, 2021.  https://doi.org/10.1109/ACCESS.2021.3136483
  9. J.Yang, S.Pei and Q.Yang, "WARCIP: Write Amplification Reduction by Clustering I/O Pages," 12th ACM International Conference on Systems and Storage, pp.155-166, 2019. 
  10. A.Eisenman, A.Cidon, E.Pergament, R.Stutsman, M.Alizadeh and S.Katti, Flashield: a Hybrid Key-value Cache that Controls Flash Write Amplification," NSDI '19 Open Access Sponsored by NetApp, 2020. 
  11. W.Zhang, X.Zhao, S.Jiang and H.Jiang, "ChameleonDB: a Key-Value Store for Optane Persistent Memory," Sixteenth European Conference on Computer Systems, pp.194-209, 2021. 
  12. L.Kong, Y.Liu, H.Liu and S.Zhao, "Protograph QC-LDPC and Rate-Adaptive Polar Codes Design for MLC NAND Flash Memories," IEEE Access, Vol.7, pp.37131-37140, 2019  https://doi.org/10.1109/ACCESS.2019.2904746
  13. G.Hemink and A.Goda, "5 - NAND Flash Technology Status and Perspectives," Semiconductor Memories and Systems, pp.119-158, 2022 
  14. L.Kong, Y.Liu, H.Liu and S.Zhao, "Protograph QC-LDPC and Rate-Adaptive Polar Codes Design for MLC NAND Flash Memories," IEEE Access, Vol.7, pp.37131-37140, 2019  https://doi.org/10.1109/ACCESS.2019.2904746
  15. R.He,H.Hu,C.Xiong and G.Han, "Artificial Neural Network Assisted Error Correction for MLC NAND Flash Memory," micromachines, Vol.12, No.8 pp.879, 2021.