DOI QR코드

DOI QR Code

Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting

  • 서주원 (서울대학교 공과대학 재료공학부) ;
  • 임상엽 (한국원자력연구원 재료안전기술연구부) ;
  • 진형하 (한국원자력연구원 재료안전기술연구부) ;
  • 천영범 (한국원자력연구원 재료안전기술연구부) ;
  • 강석훈 (한국원자력연구원 재료안전기술연구부) ;
  • 한흥남 (서울대학교 공과대학 재료공학부)
  • Joowon Suh (Department of Materials Science and Engineering & Research Institute of Advanced Materials, Seoul National University) ;
  • Sangyeob Lim (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Hyung-Ha Jin (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Young-Bum Chun (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Suk Hoon Kang (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Heung Nam Han (Department of Materials Science and Engineering & Research Institute of Advanced Materials, Seoul National University)
  • 투고 : 2023.10.13
  • 심사 : 2023.10.25
  • 발행 : 2023.10.28

초록

An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

키워드

과제정보

이 연구는 한국원자력연구원 기본사업(524480-23)의 지원 하에 수행되었습니다.

참고문헌

  1. E. A. Little: Mater. Sci. Technol., 22 (2006) 491.
  2. S. J. Zinkle and G. S. Was: Acta Mater., 61 (2013) 735.
  3. A. F. Rowcliffe, L. K. Mansur, D. T. Hoelzer and R. K. Nanstad: J. Nucl. Mater., 392 (2009) 341.
  4. M. Griffiths: Structural Alloys for Nuclear Energy Applications, R. Odette and S. Zinkle(Ed.), Newness, Oxford, (2019) 349.
  5. X. Wang, X. Gong and K. Chou: Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 231 (2017) 1890.
  6. E. Aydogan, O. El-Atwani, B. Erdem, W. Y. Chen, M. Li, A. Devaraj, B. Koc and S.A. Maloy: Addit. Manuf., 51 (2022) 102601.
  7. Y. H. Kim, J. Ryu, C. Nam, J. Choi and M. K. Kim: J. Mech. Sci. Technol., 36 (2022) 297.
  8. S. J. Zinkle and L. L. Snead: Annu. Rev. Mater. Res., 44 (2014) 241.
  9. S. J. Zinkle and J. T. Busby: Mater. Today, 12 (2009) 12.
  10. G. S. Was: J. Mater. Res., 30 (2015) 1158.
  11. S. Taller, A. Le Coq, C. Massey, J. Werden, M. Lynch and K. Linton: ORNL Scientific reports ORNL/TM-2022/2600 (2022) 1.
  12. J. D. Hunn, E. H. Lee, T. S. Byun and L. K. Mansur: J. Nucl. Mater., 296 (2001) 203.
  13. N. Hashimoto, J. D. Hunn, T. S. Byun and L. K. Mansur: J. Nucl. Mater., 318 (2003) 300.
  14. W. C. Oliver and G. M. Pharr: J. Mater. Res., 19 (2004) 3.
  15. I. Cieslik, M. Duchna, T. Plocinski, E. Wyszkowska, A. Azarov and M. Zieniuk: Surf. Coat. Technol., 396 (2020) 125952.
  16. H. Buckle: Metall. Rev., 4 (1959) 49.
  17. E. Broitman: Tribol. Lett., 65 (2017) 23.
  18. K. Ma, B. Decamps, A. Fraczkiewicz, T. Jourdan, F. Prima and M. Loyer-Prost: Acta Mater., 212 (2021) 116874.
  19. K. Ma, B. Decamps, A. Fraczkiewicz, F. Prima and M. Loyer-Prost: Mater. Res. Lett., 8 (2020) 201.
  20. S. J. Zinkle and L. L. Snead: Annu. Rev. Mater. Res., 44 (2014) 241.
  21. H. K. Zhang, Z. Yao, C. Judge and M. Griffiths: J. Nucl. Mater., 443 (2013) 49.
  22. M. A. Stopher: Mater. Sci. Technol., 33 (2017) 518.
  23. E. Toijer, L. Messina, C. Domain, J. Vidal, C. S. Becquart and P. Olsson: Phys. Rev. Mater., 5 (2021) 013602.