DOI QR코드

DOI QR Code

Calculation Speed Improvement of Optimal 3D Printing Orientation Prediction Using Closed-Volume-Voxel Structure

닫힌 부피 복셀 구조를 이용한 3D 프린팅 최적 배향 예측의 연산 속도 개선

  • Jin Young Jung (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • In Hwan Sul (Department of Materials Design Engineering, Kumoh National Institute of Technology)
  • 정진영 (한국과학기술연구원 복합소재기술연구소) ;
  • 설인환 (금오공과대학교 소재디자인공학과)
  • Received : 2023.07.07
  • Accepted : 2023.08.13
  • Published : 2023.10.31

Abstract

This paper modified our previous algorithm, designated as support structure tomography, which approximates the amount of support structure as the shadow volume from virtual sunlight. It was composed of four main steps, mesh rotation, vertically-sparse-voxelization, voxel group classification, and final support structure mass calculation. It showed a fast calculation speed of less than 1 second per orientation for 65k triangular mesh data, but further calculation speed optimization is needed for practical use. This work tried to improve the calculation speed by omitting the first and second steps. Specifically, closed-volume-voxel structures, instead of the previous vertically-sparse-voxels, were prepared and reused in each orientation using open-source software. The modified method was applied to none kinds of triangular meshes and the results were compared with those from conventional slicing software.

Keywords

Acknowledgement

이 연구는 금오공과대학교 연구과제비(2022-2023)로 지원되었습니다.

References

  1. W. Talataisong, R. Ismaeel, T. H. Marques, S. A. Mousavi, M. Beresna, M. Gouveia, S. R. Sandoghchi, T. Lee, C. M. Cordeiro, and G. Brambilla, "Mid-IR Hollow-core Microstructured Fiber Drawn from a 3D Printed PETG Preform", Scientific Reports, 2018, 8, 1-8. https://doi.org/10.1038/s41598-018-26561-8
  2. W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, and D. S. Hui, "Clinical Characteristics of Coronavirus Disease 2019 in China", New England J. Med., 2020, 382, 1708-1720. https://doi.org/10.1056/NEJMoa2002032
  3. A. Perrot, D. Rangeard, and A. Pierre, "Structural Built-up of Cement-based Materials Used for 3D-printing Extrusion Techniques", Mater. Struct., 2016, 49, 1213-1220. https://doi.org/10.1617/s11527-015-0571-0
  4. S. V. Murphy and A. Atala, "3D Bioprinting of Tissues and Organs", Nat. Biotechnol., 2014, 32, 773.
  5. J. Y. Jung and I. H. Sul, "Prediction of Filament Usage in Human Manikin 3D Printing Using Voxel Approximation-based Shadow Projection", Text. Sci. Eng., 2022, 59, 79-87.
  6. J. Y. Jung and I. H. Sul, "Quantitative Analysis on Optimal 3D Printing Orientation Information of Human Manikin Pieces", Text. Sci. Eng., 2022, 59, 17-23.
  7. J. Y. Jung, Y. J. Park, J. W. Lim, D. B. Park, S. M. Lee, J. E. Kwon, and I. H. Sul, "Observations on Dimension Change of Segmented 3D Printing Human Manikin Parts for Optimal Combination", Text. Sci. Eng., 2022, 59, 88-93.
  8. J. Y. Jung, S. Chee, and I. H. Sul, "Support Structure Tomography Using Per-pixel Signed Shadow Casting in Human Manikin 3D Printing", Fash. Text., 2022, 9, 1-18. https://doi.org/10.1186/s40691-021-00271-8
  9. I. H. Sul, "Improvement of 3D Printing Support Structure Tomography by Correcting Calculation Error between Explicit and Implicit Formula", Text. Sci. Eng., 2023, 60, 194-200.
  10. J. Y. Jung, S. Chee, and I. H. Sul, "Prediction of Optimal 3D Printing Orientation Using Vertically Sparse Voxelization and Modified Support Structure Tomography", Int. J. Clothing Sci. Technol., 2023, 35, 799-832.
  11. S. S. Crump, "Apparatus and Method for Creating Three-dimensional Objects", Google Patents, 1992.
  12. C. R. Deckard, "Method and Apparatus for Producing Parts by Selective Sintering", Google Patents, 1989.
  13. C. Dai, C. C. Wang, C. Wu, S. Lefebvre, G. Fang, and Y.-J. Liu, "Support-free Volume Printing by Multi-axis Motion", ACM Trans. Graph., 2018, 37, 1-14. https://doi.org/10.1145/3197517.3201342
  14. L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik, "Chopper: Partitioning Models into 3D-printable Parts", ACM Trans. Graph., 2012, 31, 129-137. https://doi.org/10.1145/2366145.2366148
  15. J. Vanek, J. G. Galicia, B. Benes, R. Mech, N. Carr, O. Stava, and G. Miller, "PackMerger: A 3D Print Volume Optimizer", Computer Graphics Forum, Wiley Online Library, 2014, pp.322-332.
  16. X. Chen, H. Zhang, J. Lin, R. Hu, L. Lu, Q.-X. Huang, B. Benes, D. Cohen-Or, and B. Chen, "Dapper: Decompose-and-pack for 3D Printing", ACM Trans. Graph., 2015, 34, 1-12. https://doi.org/10.1145/2816795.2818087
  17. M. X. Gan and C. H. Wong, "Practical Support Structures for Selective Laser Melting", J. Mater. Process. Technol., 2016, 238, 474-484. https://doi.org/10.1016/j.jmatprotec.2016.08.006
  18. J. Vanek, J. A. G. Galicia, and B. Benes, "Clever Support: Efficient Support Structure Generation for digital Fabrication", Computer Graphics Forum, Wiley Online Library, 2014, pp.117-125.
  19. M. Nicholson, "QChopper-Segmentation of Large Surface Meshes for 3D Printing", Queen's University, Cadana, 2016.