• Title/Summary/Keyword: optimal orientation

Search Result 211, Processing Time 0.022 seconds

Determination of Optimal Build-up Direction for Stereolithographic Rapid Prototyping (SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정)

  • Hur, Junghoon;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-173
    • /
    • 1996
  • Stereolithography is a process used to rapidly produce polymer components directly form a computer representation of the part. There are several considerations to be made for the efficient use of the process. Especially, the build-up orientation of part critically affects the part accuracy, total build time and the volume of support structures. The purpose of tis study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, and minimizing total build time and the volume of support structures. The forst factor is related to the area of surfaces whioch have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area, quantifying the process errors by the volume of materials supposed to be removed or added to the part, and the optimal layer thickness for the SLA system which can handle the variable layer thickness. So the optima l part orientation is determined based on the user's selections of primary criter- ion and the optimal thickness of layers is calculated at any part orientations.

  • PDF

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

CT characteristics of normal canine pulmonary arteries and evaluation of optimal contrast delivery methods in CT pulmonary angiography

  • Jung, Joohyun;Chang, Jinhwa;Yoon, Junghee;Choi, Mincheol
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.247-254
    • /
    • 2007
  • This study was performed to identify the normal anatomic orientation of pulmonary arteries and to obtain the normal baseline parameters and the optimal contrast material delivery methods of computed tomographic pulmonary angiography (CTPA) on normal beagle dogs. Based on the contrast injection flow rate, the contrast volume, and the administration methods, the experimental groups were divided into 4 groups such as group 1 : 2 ml/s, 3 ml/kg, and monophasic administration; group 2 : 5 ml/s, 3 ml/kg, and monophasic administration; group 3 : 5 ml/s, 4 ml/kg, and monophasic administration; group 4 : 5 ml/s and 2 ml/kg in first phase, 0.3 ml/s and 2 ml/kg in second phase, as biphasic administration. Normal anatomic orientation of pulmonary arteries in CTPA was evaluated through reformatted and 3D images after retro-reconstruction. Normal parameters for great arteries and peripheral pulmonary arteries were obtained on the factor of basement hounsfield unit (HU) values, contrast enhanced HU values, delay time, and peak time. And the optimal contrast delivery methods were evaluated on the factor of contrast enhanced HU values, image quality, and artifact. The monophasic administration with 5 ml/s contrast injection flow rate and 3 ml/kg contrast volume was optimal in canine CTPA.

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

The Effect of Entrepreneurial Orientation and Talent Management on Business Performance of the Creative Industries in Indonesia

  • MUDJIJAH, Slamet;SURACHMAN, Surachman;WIJAYANTI, Risna;ANDARWATI, Andarwati
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.1
    • /
    • pp.105-119
    • /
    • 2022
  • This study aims to develop a concept based on empirical research on improving optimal business performance. This goal is achieved by examining the relationship between variables of entrepreneurial orientation, talent management, market orientation, and business performance. The construction of the relationship between research variables, namely entrepreneurial orientation, talent management, on business performance is mediated by market orientation on handicraft businesses in Indonesia. The sampling method was used to collect data from 145 businessmen in Indonesia, using surveys and questionnaires. Data was collected using a survey technique carried out from June 2020 to December 2020. The data obtained was analyzed using the PLS Pro 19. This study developed 9 hypotheses that were tested directly, indirectly, and through mediation. This study has five findings. First, Entrepreneurship Orientation does not directly affect Business Performance. Second, Entrepreneurship Orientation also has a significant direct effect on Talent Management and market orientation. Third, Talent Management and market orientation have a direct and significant impact on business performance. Fourth, market orientation mediates the effect of entrepreneurial orientation on business performance. Fifth, talent management mediates the effect of entrepreneurial orientation on business performance. The results show that entrepreneurial orientation mediated by talent management and market orientation can improve creative industry business performance for the better.

SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정

  • 허정훈;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.552-558
    • /
    • 1995
  • Stereolithography is a process used to rapidly produce polymer components directly from a computer-representation of the part. There are several considerations to be made for the efficient use of te process. Especially, the build-up orientation of part critically affect to the part accuracy, total build time and the volume of support structures. Te purpose of this study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, minimizing total build time, and the volume of supprot structures. The first factor is related to the area of surfaces which have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area with quantifying the process planning errors that the volume of materials is supposed to be removed or added to the part, and the optimal layer thickness for the SLA system whichcan hadle the variable layer thickness in different orientations achieved by rotating the given part to the specified finite directions. So the optimal part orientation is determined based on the user's selections of primary criterion and the optimal thickness of layers is calculated at any part orientations.

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

Determination of Tool Orientation in 5-axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • 조인행;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.199-204
    • /
    • 1994
  • A method for determining the collision-free tool orientation for 5-axis milling is presented. In 5-axis milling, the proper tool orientation as well as the optimal CC-data has to be selected to machine the workpiece efficiently and accurately and accurately. Essentially, the tool orientation should be determined to avoid collisions between the tool and workpiece and to enable efficient machining. In this work, the tool orientation is determined at every CC-point which is assumed to be given. The procedure uses the potential energy method that assumes the tool and the part surfaces are charged with static electricity. This approach can detect can deteat both global and local collisions (gouging) irrespective of the tool shape. Further, in order to increase the machining efficiency, the material removal rate is maximized simultaneously.

  • PDF