DOI QR코드

DOI QR Code

커뮤니티 통계량에 기반한 사회 연결망 모니터링 절차

A social network monitoring procedure based on community statistics

  • 이주원 (중앙대학교 응용통계학과) ;
  • 이재헌 (중앙대학교 응용통계학과)
  • Joo Weon Lee (Department of Applied Statistics, Chung-Ang University) ;
  • Jaeheon Lee (Department of Applied Statistics, Chung-Ang University)
  • 투고 : 2023.03.23
  • 심사 : 2023.05.08
  • 발행 : 2023.10.31

초록

최근 사회 연결망에서 비정상적인 변화를 모니터링하는 절차는 흥미로운 연구 주제이다. 이 논문은 사회 연결망 모형 중 커뮤니티와 개인들의 경향성을 모두 고려한 동적 연결망 모형인 DCSBM (degree corrected stochastic block model)을 가정하고 이 연결망 내의 변화를 모니터링하는 절차를 고려하였다. 이때 커뮤니티의 비정상적인 변화 탐지를 위해 세 가지의 모니터링 방법을 제안하였다. 또한 제안된 방법의 성능을 평가하기 위해 모의실험을 설계하고 수행하였다. 커뮤니티의 경향성 변화에 대한 모의실험 결과 연결망을 커뮤니티에 따라 분할하여 모니터링하는 방법이 전반적으로 빠르게 변화를 탐지하여 성능이 더 좋음을 알 수 있었다.

Recently, monitoring and detecting anomalies in social networks have become an interesting research topic. In this study, we investigate the detection of abnormal changes in a network modeled by the DCSBM (degree corrected stochastic block model), which reflects the propensity of both individuals and communities. To this end, we propose three methods for anomaly detection in the DCSBM networks: One method for monitoring the entire network, and two methods for dividing and monitoring the network in consideration of communities. To compare these anomaly detection methods, we design and perform simulations. The simulation results show that the method for monitoring networks divided by communities has good performance.

키워드

과제정보

이 논문은 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2020R1F1A1A01050674).

참고문헌

  1. Abbe E, Bandeira AS, and Hall G (2016). Exact recovery in the stochastic block model, Information Theory IEEE Transactions on, 62, 471-487. https://doi.org/10.1109/TIT.2015.2490670
  2. Chau DH, Pandit S, and Faloutsos C (2006). Detecting fraudulent personalities in networks of online auctioneers, In Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery, Berlin, Germany, 103-114.
  3. Chin P, Rao A, and Vu V (2015). Stochastic block model and community detection in sparse graphs: A spectral algorithm with optimal rate of recovery, In Proceedings of The 28th Conference on Learning Theory, Paris, France, 391-423.
  4. Chung F and Lu L (2002). The average distances in random graphs with given expected degrees, Proceedings of the National Academy of Sciences, 99, 15879-15882. https://doi.org/10.1073/pnas.252631999
  5. Erdos P and Renyi A (1959). On random graphs I, Publicationes Mathematicae, 6, 290-297. https://doi.org/10.5486/PMD.1959.6.3-4.12
  6. Everton SF and Cunningham D (2013). Detecting significant changes in dark networks, Behavioral Sciences of Terrorism and Political Aggression, 5, 94-114. https://doi.org/10.1080/19434472.2012.725225
  7. Farahani EM, Kazemzadeh RB, Noorossana R, and Rahimian G (2017). A statistical approach to social network monitoring, Communications in Statistics-Theory and Methods, 46, 11272-11288. https://doi.org/10.1080/03610926.2016.1263741
  8. Fire M, Katz G, and Elovici Y (2012). Strangers intrusion detection-detecting spammers and fake profiles in social networks based on topology anomalies, Human Journal, 1, 26-39.
  9. Gao C, Ma Z, Zhang AY, and Zhou HH (2018). Community detection in degree-corrected block models, The Annals of Statistics, 46, 2153-2185. https://doi.org/10.1214/17-AOS1615
  10. Holland PW, Laskey KB, and Leinhardt S (1983). Stochastic blockmodels: First steps, Social Networks, 5, 109-137. https://doi.org/10.1016/0378-8733(83)90021-7
  11. Hosseini SS and Noorossana R (2018). Performance evaluation of EWMA and CUSUM control charts to detect anomalies in social networks using average and standard deviation of degree measures, Quality and Reliability Engineering International, 34, 477-500. https://doi.org/10.1002/qre.2267
  12. Karrer B and Newman ME (2011). Stochastic block models and community structure in networks, Physical Review E, 83, 016107-1 - 016107-10. https://doi.org/10.1103/PhysRevE.83.016107
  13. Krebs VE (2002). Mapping networks of terrorist cells, Connections, 24, 43-52.
  14. Lee JW and Lee J (2021). Self-starting monitoring procedure for the dynamic degree corrected stochastic block model, The Korean Journal of Applied Statistics, 34, 25-38. https://doi.org/10.5351/KJAS.2021.34.1.025
  15. Nowicki K and Snijders TA (2001). Estimation and prediction for stochastic blockstructures, Journal of the American Statistical Association, 96, 1077-1087. https://doi.org/10.1198/016214501753208735
  16. Priebe CE, Conroy JM, Marchette DJ, and Park Y (2005). Scan statistics on Enron graphs, Computational and Mathematical Organization Theory, 11, 229-247. https://doi.org/10.1007/s10588-005-5378-z
  17. Shetty J and Adibi J (2005). Discovering important nodes through graph entropy the case of Enron email database, In Proceeding of the 3rd International Workshop on Link Discovery, Chicago, USA, 74-81.
  18. Snijders TA and Nowicki K (1997). Estimation and prediction for stochastic blockmodels for graphs with latent block structure, Journal of Classification, 14, 75-100. https://doi.org/10.1007/s003579900004
  19. Vargas JA (2012). Spring awakening: How an Egyptian revolution began on facebook, The New York Times, Sunday Book Review, Available from: https://www.nytimes.com/2012/02/19/books/review/how-an-egyptian-revolution-began-on-facebook.html
  20. Wilson JD, Stevens NT, and Woodall WH (2019). Methods for monitoring multiple proportions when inspecting continuously, Journal of Quality Technology, 43, 237-248. https://doi.org/10.1080/00224065.2011.11917860
  21. Xu KS and Hero AO (2013). Dynamic stochastic block models: Statistical models for time evolving networks, In Social Computing, Behavioral-Cultural Modeling and Prediction, Washington DC, USA, 201-210.
  22. Yu L, Woodall WH, and Tsui KL (2018). Detecting node propensity changes in the dynamic degree corrected stochastic block model, Social Networks, 54, 209-227. https://doi.org/10.1016/j.socnet.2018.03.004
  23. Yu L, Zwetsloot IM, Stevens NT, Wilson JD, and Tsui KL (2022). Monitoring dynamic networks: A simulation-based strategy for comparing monitoring methods and a comparative study, Quality and Reliability Engineering International, 38, 1226-1250. https://doi.org/10.1002/qre.2944
  24. Zhang AY and Zhou HH (2016). Minimax rates of community detection in stochastic block models, The Annals of Statistics, 44, 2252-2280. https://doi.org/10.1214/15-AOS1428