Acknowledgement
This work was supported by Korea Food Research Institute (E0210101).
References
- Aiello A, Farzaneh F, Candore G et al (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10, 2247
- Vivier E and Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6, 17-21 https://doi.org/10.1038/ni1153
- Rodrigues LP, Teixeira VR, Alencar-Silva T et al (2021) Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev 59, 9-21 https://doi.org/10.1016/j.cytogfr.2021.01.006
- Yanez ND, Weiss NS, Romand JA and Treggiari MM (2020) COVID-19 mortality risk for older men and women. BMC Public Health 20, 1742
- Mana MD, Kuo EY and Yilmaz OH (2017) Dietary regulation of adult stem cells. Curr Stem Cell Rep 3, 1-8 https://doi.org/10.1007/s40778-017-0072-x
- Choi IY, Piccio L, Childress P et al (2016) A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 15, 2136-2146 https://doi.org/10.1016/j.celrep.2016.05.009
- Honjoh S, Yamamoto T, Uno M and Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457, 726-730 https://doi.org/10.1038/nature07583
- Hahm JH, Jeong C and Nam HG (2019) Diet restriction-induced healthy aging is mediated through the immune signaling component ZIP-2 in Caenorhabditis elegans. Aging Cell 18, e12982
- Steinkraus KA, Smith ED, Davis C et al (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7, 394-404 https://doi.org/10.1111/j.1474-9726.2008.00385.x
- Morley JF, Brignull HR, Weyers JJ and Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99, 10417-10422 https://doi.org/10.1073/pnas.152161099
- Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126, 913-922 https://doi.org/10.1016/j.mad.2005.03.012
- Longo VD and Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31, 89-98 https://doi.org/10.1016/j.tips.2009.11.004
- Shimokawa I, Higami Y, Hubbard GB, McMahan CA, Masoro EJ and Yu BP (1993) Diet and the suitability of the male Fischer 344 rat as a model for aging research. J Gerontol 48, B27-32 https://doi.org/10.1093/geronj/48.1.B27
- Colman RJ, Beasley TM, Allison DB and Weindruch R (2008) Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 63, 556-559 https://doi.org/10.1093/gerona/63.6.556
- McCay CM, Crowell MF and Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172
- Walker G, Houthoofd K, Vanfleteren JR and Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126, 929-937 https://doi.org/10.1016/j.mad.2005.03.014
- Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R and Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5, 3557
- Hahm JH, Nirmala FS, Choi PG et al (2023) The innate immune signaling component FBXC-58 mediates dietary restriction effects on healthy aging in Caenorhabditis elegans. Aging (Albany NY) 15, 21-36 https://doi.org/10.18632/aging.204477
- Lee JE, Rayyan M, Liao A, Edery I and Pletcher SD (2017) Acute dietary restriction acts via TOR, PP2A, and Myc signaling to boost innate immunity in Drosophila. Cell Rep 20, 479-490 https://doi.org/10.1016/j.celrep.2017.06.052
- Wu Z, Isik M, Moroz N, Steinbaugh MJ, Zhang P and Blackwell TK (2019) Dietary restriction extends lifespan through metabolic regulation of innate immunity. Cell Metab 29, 1192-1205 e1198
- Kenyon CJ (2010) The genetics of ageing. Nature 464, 504-512 https://doi.org/10.1038/nature08980
- Greer EL, Dowlatshahi D, Banko MR et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17, 1646-1656 https://doi.org/10.1016/j.cub.2007.08.047
- Greer EL and Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113-127 https://doi.org/10.1111/j.1474-9726.2009.00459.x
- Green CL, Lamming DW and Fontana L (2022) Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 23, 56-73 https://doi.org/10.1038/s41580-021-00411-4
- Weindruch R and Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215, 1415-1418 https://doi.org/10.1126/science.7063854
- Acosta-Rodriguez V, Rijo-Ferreira F, Izumo M et al (2022) Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192-1202 https://doi.org/10.1126/science.abk0297
- Gibbs RA, Rogers J, Katze MG et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222-234 https://doi.org/10.1126/science.1139247
- Zimin AV, Cornish AS, Maudhoo MD et al (2014) A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol Direct 9, 20
- Mattison JA, Roth GS, Beasley TM et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318-321 https://doi.org/10.1038/nature11432
- Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201-204 https://doi.org/10.1126/science.1173635
- Mattison JA, Colman RJ, Beasley TM et al (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8, 14063
- Chow DK, Glenn CF, Johnston JL, Goldberg IG and Wolkow CA (2006) Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41, 252-260 https://doi.org/10.1016/j.exger.2005.12.004
- Longo VD and Panda S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23, 1048-1059 https://doi.org/10.1016/j.cmet.2016.06.001
- Cohen E, Paulsson JF, Blinder P et al (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139, 1157-1169 https://doi.org/10.1016/j.cell.2009.11.014
- Mattson MP (2005) Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr 25, 237-260 https://doi.org/10.1146/annurev.nutr.25.050304.092526
- Willcox BJ, Willcox DC, Todoriki H et al (2007) Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci 1114, 434-455 https://doi.org/10.1196/annals.1396.037
- Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7, 205-217 https://doi.org/10.1016/0091-7435(78)90246-3
- Most J, Tosti V, Redman LM and Fontana L (2017) Calorie restriction in humans: an update. Ageing Res Rev 39, 36-45 https://doi.org/10.1016/j.arr.2016.08.005
- Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO and Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47, 398-402 https://doi.org/10.1016/j.jacc.2005.08.069
- Fontana L, Meyer TE, Klein S and Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101, 6659-6663 https://doi.org/10.1073/pnas.0308291101
- Fontana L, Klein S and Holloszy JO (2010) Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production. Age (Dordr) 32, 97-108 https://doi.org/10.1007/s11357-009-9118-z
- Ravussin E, Redman LM, Rochon J et al (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70, 1097-1104 https://doi.org/10.1093/gerona/glv057
- Redman LM, Kraus WE, Bhapkar M et al (2014) Energy requirements in nonobese men and women: results from CALERIE. Am J Clin Nutr 99, 71-78 https://doi.org/10.3945/ajcn.113.065631
- Villareal DT, Fontana L, Weiss EP et al (2006) Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166, 2502-2510 https://doi.org/10.1001/archinte.166.22.2502
- Kenyon C, Chang J, Gensch E, Rudner A and Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464 https://doi.org/10.1038/366461a0
- Tatar M, Bartke A and Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299, 1346-1351 https://doi.org/10.1126/science.1081447
- Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283 https://doi.org/10.1038/nature01789
- Panowski SH, Wolff S, Aguilaniu H, Durieux J and Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550-555 https://doi.org/10.1038/nature05837
- Kaeberlein TL, Smith ED, Tsuchiya M et al (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487-494 https://doi.org/10.1111/j.1474-9726.2006.00238.x
- Chen D, Thomas EL and Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5, e1000486
- Selman C, Lingard S, Choudhury AI et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22, 807-818 https://doi.org/10.1096/fj.07-9261com
- Taguchi A, Wartschow LM and White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369-372 https://doi.org/10.1126/science.1142179
- Coschigano KT, Clemmons D, Bellush LL and Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608-2613 https://doi.org/10.1210/endo.141.7.7586
- Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187 https://doi.org/10.1038/nature01298
- Bokov AF, Garg N, Ikeno Y et al (2011) Does reduced IGF-1R signaling in Igf1r+/- mice alter aging? PLoS One 6, e26891
- Xu J, Gontier G, Chaker Z, Lacube P, Dupont J and Holzenberger M (2014) Longevity effect of IGF-1R(+/-) mutation depends on genetic background-specific receptor activation. Aging Cell 13, 19-28 https://doi.org/10.1111/acel.12145
- Kappeler L, De Magalhaes Filho C, Dupont J et al (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6, e254
- Longo VD and Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19, 181-192 https://doi.org/10.1016/j.cmet.2013.12.008
- Lee C and Longo VD (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30, 3305-3316 https://doi.org/10.1038/onc.2011.91
- Aguiar-Oliveira MH, Oliveira FT, Pereira RM et al (2010) Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J Clin Endocrinol Metab 95, 714-721 https://doi.org/10.1210/jc.2009-1879
- Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG and Fielder PJ (1990) The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med 323, 1367-1374 https://doi.org/10.1056/NEJM199011153232002
- Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3, 70ra13
- Fontana L, Weiss EP, Villareal DT, Klein S and Holloszy JO (2008) Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7, 681-687 https://doi.org/10.1111/j.1474-9726.2008.00417.x
- Kapahi P, Chen D, Rogers AN et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11, 453-465 https://doi.org/10.1016/j.cmet.2010.05.001
- Uno M and Nishida E (2016) Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2, 16010
- Lakowski B and Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95, 13091-13096 https://doi.org/10.1073/pnas.95.22.13091
- Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M and Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4, e24
- Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L and Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620
- Jia K, Chen D and Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-3906 https://doi.org/10.1242/dev.01255
- Selman C, Tullet JM, Wieser D et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140-144 https://doi.org/10.1126/science.1177221
- Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395 https://doi.org/10.1038/nature08221
- Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226 https://doi.org/10.1016/j.molcel.2008.03.003
- Anisimov VN, Berstein LM, Egormin PA et al (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769-2773 https://doi.org/10.4161/cc.7.17.6625
- Mannick JB, Morris M, Hockey HP et al (2018) TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 10, eaaq1564
- Chung CL, Lawrence I, Hoffman M et al (2019) Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 41, 861-869 https://doi.org/10.1007/s11357-019-00113-y
- Johnston O, Rose CL, Webster AC and Gill JS (2008) Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19, 1411-1418 https://doi.org/10.1681/ASN.2007111202
- Soo SK, Traa A, Rudich ZD, Moldakozhayev A, Mistry M and Van Raamsdonk JM (2022) Genetic basis of enhanced stress resistance in long-lived mutants highlights key role of innate immunity in determining longevity. Aging Cell 22, e13740
- Fabian DK, Fuentealba M, Donertas HM, Partridge L and Thornton JM (2021) Functional conservation in genes and pathways linking ageing and immunity. Immun Ageing 18, 23
- de Magalhaes JP and Toussaint O (2004) GenAge: a genomic and proteomic network map of human ageing. FEBS Lett 571, 243-247 https://doi.org/10.1016/j.febslet.2004.07.006
- Huhne R, Thalheim T and Suhnel J (2014) AgeFactDB-the JenAge Ageing Factor Database-towards data integration in ageing research. Nucleic Acids Res 42, D892-896 https://doi.org/10.1093/nar/gkt1073
- Brucker RM, Funkhouser LJ, Setia S, Pauly R and Bordenstein SR (2012) Insect Innate Immunity Database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS One 7, e45125
- Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 41, D1228-1233 https://doi.org/10.1093/nar/gks1147
- Ortutay C and Vihinen M (2009) Immunome knowledge base (IKB): an integrated service for immunome research. BMC Immunol 10, 3
- Estes KA, Dunbar TL, Powell JR, Ausubel FM and Troemel ER (2010) bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 2153-2158 https://doi.org/10.1073/pnas.0914643107
- Brandhorst S, Choi IY, Wei M et al (2015) A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab 22, 86-99 https://doi.org/10.1016/j.cmet.2015.05.012
- Cheng CW, Adams GB, Perin L et al (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810-823 https://doi.org/10.1016/j.stem.2014.04.014
- Nikolich-Zugich J (2014) Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J Immunol 193, 2622-2629 https://doi.org/10.4049/jimmunol.1401174
- Messaoudi I, Warner J, Fischer M et al (2006) Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 103, 19448-19453 https://doi.org/10.1073/pnas.0606661103
- Spadaro O, Youm Y, Shchukina I et al (2022) Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671-677 https://doi.org/10.1126/science.abg7292