DOI QR코드

DOI QR Code

Longevity through diet restriction and immunity

  • Jeong-Hoon Hahm (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Hyo-Deok Seo (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Chang Hwa Jung (Aging and Metabolism Research Group, Korea Food Research Institute) ;
  • Jiyun Ahn (Aging and Metabolism Research Group, Korea Food Research Institute)
  • Received : 2023.06.06
  • Accepted : 2023.07.14
  • Published : 2023.10.31

Abstract

The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DR-induced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human.

Keywords

Acknowledgement

This work was supported by Korea Food Research Institute (E0210101).

References

  1. Aiello A, Farzaneh F, Candore G et al (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10, 2247
  2. Vivier E and Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6, 17-21 https://doi.org/10.1038/ni1153
  3. Rodrigues LP, Teixeira VR, Alencar-Silva T et al (2021) Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev 59, 9-21 https://doi.org/10.1016/j.cytogfr.2021.01.006
  4. Yanez ND, Weiss NS, Romand JA and Treggiari MM (2020) COVID-19 mortality risk for older men and women. BMC Public Health 20, 1742
  5. Mana MD, Kuo EY and Yilmaz OH (2017) Dietary regulation of adult stem cells. Curr Stem Cell Rep 3, 1-8 https://doi.org/10.1007/s40778-017-0072-x
  6. Choi IY, Piccio L, Childress P et al (2016) A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 15, 2136-2146 https://doi.org/10.1016/j.celrep.2016.05.009
  7. Honjoh S, Yamamoto T, Uno M and Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457, 726-730 https://doi.org/10.1038/nature07583
  8. Hahm JH, Jeong C and Nam HG (2019) Diet restriction-induced healthy aging is mediated through the immune signaling component ZIP-2 in Caenorhabditis elegans. Aging Cell 18, e12982
  9. Steinkraus KA, Smith ED, Davis C et al (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7, 394-404 https://doi.org/10.1111/j.1474-9726.2008.00385.x
  10. Morley JF, Brignull HR, Weyers JJ and Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99, 10417-10422 https://doi.org/10.1073/pnas.152161099
  11. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126, 913-922 https://doi.org/10.1016/j.mad.2005.03.012
  12. Longo VD and Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31, 89-98 https://doi.org/10.1016/j.tips.2009.11.004
  13. Shimokawa I, Higami Y, Hubbard GB, McMahan CA, Masoro EJ and Yu BP (1993) Diet and the suitability of the male Fischer 344 rat as a model for aging research. J Gerontol 48, B27-32 https://doi.org/10.1093/geronj/48.1.B27
  14. Colman RJ, Beasley TM, Allison DB and Weindruch R (2008) Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 63, 556-559 https://doi.org/10.1093/gerona/63.6.556
  15. McCay CM, Crowell MF and Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172
  16. Walker G, Houthoofd K, Vanfleteren JR and Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126, 929-937 https://doi.org/10.1016/j.mad.2005.03.014
  17. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R and Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5, 3557
  18. Hahm JH, Nirmala FS, Choi PG et al (2023) The innate immune signaling component FBXC-58 mediates dietary restriction effects on healthy aging in Caenorhabditis elegans. Aging (Albany NY) 15, 21-36 https://doi.org/10.18632/aging.204477
  19. Lee JE, Rayyan M, Liao A, Edery I and Pletcher SD (2017) Acute dietary restriction acts via TOR, PP2A, and Myc signaling to boost innate immunity in Drosophila. Cell Rep 20, 479-490 https://doi.org/10.1016/j.celrep.2017.06.052
  20. Wu Z, Isik M, Moroz N, Steinbaugh MJ, Zhang P and Blackwell TK (2019) Dietary restriction extends lifespan through metabolic regulation of innate immunity. Cell Metab 29, 1192-1205 e1198
  21. Kenyon CJ (2010) The genetics of ageing. Nature 464, 504-512 https://doi.org/10.1038/nature08980
  22. Greer EL, Dowlatshahi D, Banko MR et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17, 1646-1656 https://doi.org/10.1016/j.cub.2007.08.047
  23. Greer EL and Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113-127 https://doi.org/10.1111/j.1474-9726.2009.00459.x
  24. Green CL, Lamming DW and Fontana L (2022) Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 23, 56-73 https://doi.org/10.1038/s41580-021-00411-4
  25. Weindruch R and Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215, 1415-1418 https://doi.org/10.1126/science.7063854
  26. Acosta-Rodriguez V, Rijo-Ferreira F, Izumo M et al (2022) Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192-1202 https://doi.org/10.1126/science.abk0297
  27. Gibbs RA, Rogers J, Katze MG et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222-234 https://doi.org/10.1126/science.1139247
  28. Zimin AV, Cornish AS, Maudhoo MD et al (2014) A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol Direct 9, 20
  29. Mattison JA, Roth GS, Beasley TM et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318-321 https://doi.org/10.1038/nature11432
  30. Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201-204 https://doi.org/10.1126/science.1173635
  31. Mattison JA, Colman RJ, Beasley TM et al (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8, 14063
  32. Chow DK, Glenn CF, Johnston JL, Goldberg IG and Wolkow CA (2006) Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41, 252-260 https://doi.org/10.1016/j.exger.2005.12.004
  33. Longo VD and Panda S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23, 1048-1059 https://doi.org/10.1016/j.cmet.2016.06.001
  34. Cohen E, Paulsson JF, Blinder P et al (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139, 1157-1169 https://doi.org/10.1016/j.cell.2009.11.014
  35. Mattson MP (2005) Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr 25, 237-260 https://doi.org/10.1146/annurev.nutr.25.050304.092526
  36. Willcox BJ, Willcox DC, Todoriki H et al (2007) Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci 1114, 434-455 https://doi.org/10.1196/annals.1396.037
  37. Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7, 205-217 https://doi.org/10.1016/0091-7435(78)90246-3
  38. Most J, Tosti V, Redman LM and Fontana L (2017) Calorie restriction in humans: an update. Ageing Res Rev 39, 36-45 https://doi.org/10.1016/j.arr.2016.08.005
  39. Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO and Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47, 398-402 https://doi.org/10.1016/j.jacc.2005.08.069
  40. Fontana L, Meyer TE, Klein S and Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101, 6659-6663 https://doi.org/10.1073/pnas.0308291101
  41. Fontana L, Klein S and Holloszy JO (2010) Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production. Age (Dordr) 32, 97-108 https://doi.org/10.1007/s11357-009-9118-z
  42. Ravussin E, Redman LM, Rochon J et al (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70, 1097-1104 https://doi.org/10.1093/gerona/glv057
  43. Redman LM, Kraus WE, Bhapkar M et al (2014) Energy requirements in nonobese men and women: results from CALERIE. Am J Clin Nutr 99, 71-78 https://doi.org/10.3945/ajcn.113.065631
  44. Villareal DT, Fontana L, Weiss EP et al (2006) Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166, 2502-2510 https://doi.org/10.1001/archinte.166.22.2502
  45. Kenyon C, Chang J, Gensch E, Rudner A and Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464 https://doi.org/10.1038/366461a0
  46. Tatar M, Bartke A and Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299, 1346-1351 https://doi.org/10.1126/science.1081447
  47. Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283 https://doi.org/10.1038/nature01789
  48. Panowski SH, Wolff S, Aguilaniu H, Durieux J and Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550-555 https://doi.org/10.1038/nature05837
  49. Kaeberlein TL, Smith ED, Tsuchiya M et al (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487-494 https://doi.org/10.1111/j.1474-9726.2006.00238.x
  50. Chen D, Thomas EL and Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5, e1000486
  51. Selman C, Lingard S, Choudhury AI et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22, 807-818 https://doi.org/10.1096/fj.07-9261com
  52. Taguchi A, Wartschow LM and White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369-372 https://doi.org/10.1126/science.1142179
  53. Coschigano KT, Clemmons D, Bellush LL and Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608-2613 https://doi.org/10.1210/endo.141.7.7586
  54. Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187 https://doi.org/10.1038/nature01298
  55. Bokov AF, Garg N, Ikeno Y et al (2011) Does reduced IGF-1R signaling in Igf1r+/- mice alter aging? PLoS One 6, e26891
  56. Xu J, Gontier G, Chaker Z, Lacube P, Dupont J and Holzenberger M (2014) Longevity effect of IGF-1R(+/-) mutation depends on genetic background-specific receptor activation. Aging Cell 13, 19-28 https://doi.org/10.1111/acel.12145
  57. Kappeler L, De Magalhaes Filho C, Dupont J et al (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6, e254
  58. Longo VD and Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19, 181-192 https://doi.org/10.1016/j.cmet.2013.12.008
  59. Lee C and Longo VD (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30, 3305-3316 https://doi.org/10.1038/onc.2011.91
  60. Aguiar-Oliveira MH, Oliveira FT, Pereira RM et al (2010) Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene. J Clin Endocrinol Metab 95, 714-721 https://doi.org/10.1210/jc.2009-1879
  61. Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG and Fielder PJ (1990) The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med 323, 1367-1374 https://doi.org/10.1056/NEJM199011153232002
  62. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3, 70ra13
  63. Fontana L, Weiss EP, Villareal DT, Klein S and Holloszy JO (2008) Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 7, 681-687 https://doi.org/10.1111/j.1474-9726.2008.00417.x
  64. Kapahi P, Chen D, Rogers AN et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11, 453-465 https://doi.org/10.1016/j.cmet.2010.05.001
  65. Uno M and Nishida E (2016) Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2, 16010
  66. Lakowski B and Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95, 13091-13096 https://doi.org/10.1073/pnas.95.22.13091
  67. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M and Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4, e24
  68. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L and Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620
  69. Jia K, Chen D and Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-3906 https://doi.org/10.1242/dev.01255
  70. Selman C, Tullet JM, Wieser D et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140-144 https://doi.org/10.1126/science.1177221
  71. Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395 https://doi.org/10.1038/nature08221
  72. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214-226 https://doi.org/10.1016/j.molcel.2008.03.003
  73. Anisimov VN, Berstein LM, Egormin PA et al (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769-2773 https://doi.org/10.4161/cc.7.17.6625
  74. Mannick JB, Morris M, Hockey HP et al (2018) TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 10, eaaq1564
  75. Chung CL, Lawrence I, Hoffman M et al (2019) Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. Geroscience 41, 861-869 https://doi.org/10.1007/s11357-019-00113-y
  76. Johnston O, Rose CL, Webster AC and Gill JS (2008) Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19, 1411-1418 https://doi.org/10.1681/ASN.2007111202
  77. Soo SK, Traa A, Rudich ZD, Moldakozhayev A, Mistry M and Van Raamsdonk JM (2022) Genetic basis of enhanced stress resistance in long-lived mutants highlights key role of innate immunity in determining longevity. Aging Cell 22, e13740
  78. Fabian DK, Fuentealba M, Donertas HM, Partridge L and Thornton JM (2021) Functional conservation in genes and pathways linking ageing and immunity. Immun Ageing 18, 23
  79. de Magalhaes JP and Toussaint O (2004) GenAge: a genomic and proteomic network map of human ageing. FEBS Lett 571, 243-247 https://doi.org/10.1016/j.febslet.2004.07.006
  80. Huhne R, Thalheim T and Suhnel J (2014) AgeFactDB-the JenAge Ageing Factor Database-towards data integration in ageing research. Nucleic Acids Res 42, D892-896 https://doi.org/10.1093/nar/gkt1073
  81. Brucker RM, Funkhouser LJ, Setia S, Pauly R and Bordenstein SR (2012) Insect Innate Immunity Database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS One 7, e45125
  82. Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 41, D1228-1233 https://doi.org/10.1093/nar/gks1147
  83. Ortutay C and Vihinen M (2009) Immunome knowledge base (IKB): an integrated service for immunome research. BMC Immunol 10, 3
  84. Estes KA, Dunbar TL, Powell JR, Ausubel FM and Troemel ER (2010) bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 2153-2158 https://doi.org/10.1073/pnas.0914643107
  85. Brandhorst S, Choi IY, Wei M et al (2015) A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab 22, 86-99 https://doi.org/10.1016/j.cmet.2015.05.012
  86. Cheng CW, Adams GB, Perin L et al (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810-823 https://doi.org/10.1016/j.stem.2014.04.014
  87. Nikolich-Zugich J (2014) Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J Immunol 193, 2622-2629 https://doi.org/10.4049/jimmunol.1401174
  88. Messaoudi I, Warner J, Fischer M et al (2006) Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 103, 19448-19453 https://doi.org/10.1073/pnas.0606661103
  89. Spadaro O, Youm Y, Shchukina I et al (2022) Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671-677 https://doi.org/10.1126/science.abg7292