Acknowledgement
This work was supported by the National Research foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00214187). This work was supported by the Yonsei University Research Fund of 2022 (2022-22-0138).
References
- Chun L, Zhang WH and Liu JF (2012) Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin 33, 312-323 https://doi.org/10.1038/aps.2011.186
- Fredriksson R, Lagerstrom MC, Lundin LG and Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256-1272 https://doi.org/10.1124/mol.63.6.1256
- Pin JP, Galvez T and Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-proteincoupled receptors. Pharmacol Ther 98, 325-354 https://doi.org/10.1016/S0163-7258(03)00038-X
- Stevens RC, Cherezov V, Katritch V et al (2013) The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12, 25-34 https://doi.org/10.1038/nrd3859
- Nichols DE and Nichols CD (2008) Serotonin receptors. Chem Rev 108, 1614-1641 https://doi.org/10.1021/cr078224o
- McCorvy JD and Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150, 129-142 https://doi.org/10.1016/j.pharmthera.2015.01.009
- Kroeze WK, Kristiansen K and Roth BL (2002) Molecular biology of serotonin receptors-structure and function at the molecular level. Curr Top Med Chem 2, 507-528 https://doi.org/10.2174/1568026023393796
- Berger M, Gray JA and Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60, 355-366 https://doi.org/10.1146/annurev.med.60.042307.110802
- Roth BL, Sheffler DJ and Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3, 353-359 https://doi.org/10.1038/nrd1346
- Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383-387 https://doi.org/10.1038/nature06325
- Ballesteros JA and Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25, 366-428 https://doi.org/10.1016/S1043-9471(05)80049-7
- Wang YQ, Lin WW, Wu N et al (2019) Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacol Sin 40, 1138-1156 https://doi.org/10.1038/s41401-019-0217-9
- Noda M, Higashida H, Aoki S and Wada K (2004) Multiple signal transduction pathways mediated by 5-HT receptors. Mol Neurobiol 29, 31-39 https://doi.org/10.1385/MN:29:1:31
- Huang S, Xu P, Shen DD et al (2022) GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol Cell 82, 2681-2695 e2686
- Freedman NJ and Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51, 319-351 discussion 352-353
- Wacker D, Wang C, Katritch V et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340, 615-619 https://doi.org/10.1126/science.1232808
- Cao C, Barros-Alvarez X, Zhang S et al (2022) Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron 110, 3154-3167 e3157
- Aznavour N and Zimmer L (2007) MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology 52, 695-707 https://doi.org/10.1016/j.neuropharm.2006.09.023
- Hoyer D, Clarke DE, Fozard JR et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46, 157-203
- Sharp T and Barnes NM (2020) Central 5-HT receptors and their function; present and future. Neuropharmacology 177, 108155
- Barnes NM and Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083-1152 https://doi.org/10.1016/S0028-3908(99)00010-6
- Villaln C, Centurin D, Valdivia L, de Vries P and Saxena PR (2003) Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol 1, 71-84 https://doi.org/10.2174/1570161033386826
- Bruinvels A, Landwehrmeyer B, Gustafson E et al (1994) Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33, 367-386 https://doi.org/10.1016/0028-3908(94)90067-1
- Xu P, Huang S, Zhang H et al (2021) Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469-473 https://doi.org/10.1038/s41586-021-03376-8
- Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340, 610-614 https://doi.org/10.1126/science.1232807
- Garcia-Nafria J, Nehme R, Edwards PC and Tate CG (2018) Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620-623 https://doi.org/10.1038/s41586-018-0241-9
- Yin W, Zhou XE, Yang D et al (2018) Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discov 4, 12
- Negro A, Koverech A and Martelletti P (2018) Serotonin receptor agonists in the acute treatment of migraine: a review on their therapeutic potential. J Pain Res 11, 515-526 https://doi.org/10.2147/JPR.S132833
- Huang S, Xu P, Tan Y et al (2021) Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F-G protein complex. Cell Res 31, 1036-1038 https://doi.org/10.1038/s41422-021-00527-4
- Aznar S and Hervig ME-S (2016) The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 64, 63-82 https://doi.org/10.1016/j.neubiorev.2016.02.008
- De Deurwaerdere P, Bharatiya R, Chagraoui A and Di Giovanni G (2020) Constitutive activity of 5-HT receptors: factual analysis. Neuropharmacology 168, 107967
- Leysen J (2004) 5-HT2 receptors. CNS Neurol Disord Drug Targets 3, 11-26 https://doi.org/10.2174/1568007043482598
- Berg KA, Harvey JA, Spampinato U and Clarke WP (2008) Physiological and therapeutic relevance of constitutive activity of 5-HT2A and 5-HT2C receptors for the treatment of depression. Prog Brain Res 172, 287-305 https://doi.org/10.1016/S0079-6123(08)00914-X
- Kimura KT, Asada H, Inoue A et al (2019) Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 26, 121-128 https://doi.org/10.1038/s41594-018-0180-z
- Zhang G and Stackman Jr RW (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6, 225
- Kimura KT, Asada H, Inoue A et al (2019) Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 26, 121-128 https://doi.org/10.1038/s41594-018-0180-z
- Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA and Shi L (2015) What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 67, 198-213 https://doi.org/10.1124/pr.114.009944
- Peng Y, McCorvy JD, Harpsoe K et al (2018) 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719-730 e714
- Wacker D, Wang S, McCorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377-389 e312
- McCorvy JD, Wacker D, Wang S et al (2018) Structural determinants of 5-HT2B receptor activation and biased agonism. Nat Struct Mol Biol 25, 787-796 https://doi.org/10.1038/s41594-018-0116-7
- Gumpper RH, Fay JF and Roth BL (2022) Molecular insights into the regulation of constitutive activity by RNA editing of 5HT2C serotonin receptors. Cell Rep 40, 111211
- Grailhe R, Grabtree GW and Hen R (2001) Human 5-HT5 receptors: the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur J Pharmacol 418, 157-167 https://doi.org/10.1016/S0014-2999(01)00933-5
- Nelson D (2004) 5-HT5 receptors. CNS Neurol Disord Drug Targets 3, 53-58 https://doi.org/10.2174/1568007043482606
- Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111, 707-714 https://doi.org/10.1016/j.pharmthera.2005.12.006
- Levit Kaplan A, Strachan RT, Braz JM et al (2022) Structure-based design of a chemical probe set for the 5-HT5A serotonin receptor. J Med Chem 65, 4201-4217 https://doi.org/10.1021/acs.jmedchem.1c02031
- Tan Y, Xu P, Huang S et al (2022) Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A. Cell Discov 8, 50
- Zhang S, Chen H, Zhang C et al (2022) Inactive and active state structures template selective tools for the human 5-HT5A receptor. Nat Struct Mol Biol 29, 677-687 https://doi.org/10.1038/s41594-022-00796-6
- Eglen RM, Wong EH, Dumuis A and Bockaert J (1995) Central 5-HT4 receptors. Trends Pharmacol Sci 16, 391-398 https://doi.org/10.1016/S0165-6147(00)89081-1
- Mitchell ES and Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108, 320-333 https://doi.org/10.1016/j.pharmthera.2005.05.001
- Guseva D, Wirth A and Ponimaskin E (2014) Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci 8, 306
- Roth BL, Craigo SC, Choudhary MS et al (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268, 1403-1410
- Kristiansen K, Kroeze WK, Willins DL et al (2000) A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a "salt-bridge disruption" mechanism. J Pharmacol Exp Ther 293, 735-746
- Katritch V, Cherezov V and Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33, 17-27 https://doi.org/10.1016/j.tips.2011.09.003
- Choudhary MS, Craigo S and Roth BL (1993) A single point mutation (Phe340-->Leu340) of a conserved phenylalanine abolishes 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]mesulergine but not [3H]ketanserin binding to 5-hydroxytryptamine2 receptors. Mol Pharmacol 43, 755-761
- Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J and Chattopadhyay A (2021) Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 13, 101-122 https://doi.org/10.1007/s12551-020-00772-8
- Naughton M, Mulrooney JB and Leonard BE (2000) A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol 15, 397-415 https://doi.org/10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.0.CO;2-L
- Miyagi H, Asada H, Suzuki M et al (2020) The discovery of a new antibody for BRIL-fused GPCR structure determination. Sci Rep 10, 11669
- Cao D, Yu J, Wang H et al (2022) Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375, 403-411 https://doi.org/10.1126/science.abl8615
- Kim K, Che T, Panova O et al (2020) Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574-1588 e1519
- Kaplan AL, Confair DN, Kim K et al (2022) Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582-591 https://doi.org/10.1038/s41586-022-05258-z
- Ishchenko A, Wacker D, Kapoor M et al (2017) Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proc Natl Acad Sci U S A 114, 8223-8228 https://doi.org/10.1073/pnas.1700891114
- Pei Y, Wen X, Guo SC et al (2023) Structural insight into the selective agonist ST1936 binding of serotonin receptor 5-HT6. Biochem Biophys Res Commun 671, 327-334 https://doi.org/10.1016/j.bbrc.2023.05.126