DOI QR코드

DOI QR Code

Structural studies of serotonin receptor family

  • Apeksha Parajulee (Department of Pharmacy, College of Pharmacy, Yonsei University) ;
  • Kuglae Kim (Department of Pharmacy, College of Pharmacy, Yonsei University)
  • Received : 2023.07.27
  • Accepted : 2023.09.25
  • Published : 2023.10.31

Abstract

Serotonin receptors, also known as 5-HT receptors, belong to the G protein-coupled receptors (GPCRs) superfamily. They mediate the effects of serotonin, a neurotransmitter that plays a key role in a wide range of functions including mood regulation, cognition and appetite. The functions of serotonin are mediated by a family of 5-HT receptors including 12 GPCRs belonging to six major families: 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 5-HT7. Despite their distinct characteristics and functions, these receptors' subtypes share common structural features and signaling mechanisms. Understanding the structure, functions and pharmacology of the serotonin receptor family is essential for unraveling the complexities of serotonin signaling and developing targeted therapeutics for neuropsychiatric disorders. However, developing drugs that selectively target specific receptor subtypes is challenging due to the structural similarities in their orthosteric binding sites. This review focuses on the recent advancements in the structural studies of 5-HT receptors, highlighting the key structural features of each subtype and shedding light on their potential as targets for mental health and neurological disorders (such as depression, anxiety, schizophrenia, and migraine) drugs.

Keywords

Acknowledgement

This work was supported by the National Research foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00214187). This work was supported by the Yonsei University Research Fund of 2022 (2022-22-0138).

References

  1. Chun L, Zhang WH and Liu JF (2012) Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin 33, 312-323 https://doi.org/10.1038/aps.2011.186
  2. Fredriksson R, Lagerstrom MC, Lundin LG and Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256-1272 https://doi.org/10.1124/mol.63.6.1256
  3. Pin JP, Galvez T and Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-proteincoupled receptors. Pharmacol Ther 98, 325-354 https://doi.org/10.1016/S0163-7258(03)00038-X
  4. Stevens RC, Cherezov V, Katritch V et al (2013) The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12, 25-34 https://doi.org/10.1038/nrd3859
  5. Nichols DE and Nichols CD (2008) Serotonin receptors. Chem Rev 108, 1614-1641 https://doi.org/10.1021/cr078224o
  6. McCorvy JD and Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150, 129-142 https://doi.org/10.1016/j.pharmthera.2015.01.009
  7. Kroeze WK, Kristiansen K and Roth BL (2002) Molecular biology of serotonin receptors-structure and function at the molecular level. Curr Top Med Chem 2, 507-528 https://doi.org/10.2174/1568026023393796
  8. Berger M, Gray JA and Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60, 355-366 https://doi.org/10.1146/annurev.med.60.042307.110802
  9. Roth BL, Sheffler DJ and Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3, 353-359 https://doi.org/10.1038/nrd1346
  10. Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383-387 https://doi.org/10.1038/nature06325
  11. Ballesteros JA and Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25, 366-428 https://doi.org/10.1016/S1043-9471(05)80049-7
  12. Wang YQ, Lin WW, Wu N et al (2019) Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacol Sin 40, 1138-1156 https://doi.org/10.1038/s41401-019-0217-9
  13. Noda M, Higashida H, Aoki S and Wada K (2004) Multiple signal transduction pathways mediated by 5-HT receptors. Mol Neurobiol 29, 31-39 https://doi.org/10.1385/MN:29:1:31
  14. Huang S, Xu P, Shen DD et al (2022) GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol Cell 82, 2681-2695 e2686
  15. Freedman NJ and Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51, 319-351 discussion 352-353
  16. Wacker D, Wang C, Katritch V et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340, 615-619 https://doi.org/10.1126/science.1232808
  17. Cao C, Barros-Alvarez X, Zhang S et al (2022) Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron 110, 3154-3167 e3157
  18. Aznavour N and Zimmer L (2007) MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology 52, 695-707 https://doi.org/10.1016/j.neuropharm.2006.09.023
  19. Hoyer D, Clarke DE, Fozard JR et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46, 157-203
  20. Sharp T and Barnes NM (2020) Central 5-HT receptors and their function; present and future. Neuropharmacology 177, 108155
  21. Barnes NM and Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083-1152 https://doi.org/10.1016/S0028-3908(99)00010-6
  22. Villaln C, Centurin D, Valdivia L, de Vries P and Saxena PR (2003) Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol 1, 71-84 https://doi.org/10.2174/1570161033386826
  23. Bruinvels A, Landwehrmeyer B, Gustafson E et al (1994) Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33, 367-386 https://doi.org/10.1016/0028-3908(94)90067-1
  24. Xu P, Huang S, Zhang H et al (2021) Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469-473 https://doi.org/10.1038/s41586-021-03376-8
  25. Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340, 610-614 https://doi.org/10.1126/science.1232807
  26. Garcia-Nafria J, Nehme R, Edwards PC and Tate CG (2018) Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620-623 https://doi.org/10.1038/s41586-018-0241-9
  27. Yin W, Zhou XE, Yang D et al (2018) Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discov 4, 12
  28. Negro A, Koverech A and Martelletti P (2018) Serotonin receptor agonists in the acute treatment of migraine: a review on their therapeutic potential. J Pain Res 11, 515-526 https://doi.org/10.2147/JPR.S132833
  29. Huang S, Xu P, Tan Y et al (2021) Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-HT1F-G protein complex. Cell Res 31, 1036-1038 https://doi.org/10.1038/s41422-021-00527-4
  30. Aznar S and Hervig ME-S (2016) The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 64, 63-82 https://doi.org/10.1016/j.neubiorev.2016.02.008
  31. De Deurwaerdere P, Bharatiya R, Chagraoui A and Di Giovanni G (2020) Constitutive activity of 5-HT receptors: factual analysis. Neuropharmacology 168, 107967
  32. Leysen J (2004) 5-HT2 receptors. CNS Neurol Disord Drug Targets 3, 11-26 https://doi.org/10.2174/1568007043482598
  33. Berg KA, Harvey JA, Spampinato U and Clarke WP (2008) Physiological and therapeutic relevance of constitutive activity of 5-HT2A and 5-HT2C receptors for the treatment of depression. Prog Brain Res 172, 287-305 https://doi.org/10.1016/S0079-6123(08)00914-X
  34. Kimura KT, Asada H, Inoue A et al (2019) Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 26, 121-128 https://doi.org/10.1038/s41594-018-0180-z
  35. Zhang G and Stackman Jr RW (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6, 225
  36. Kimura KT, Asada H, Inoue A et al (2019) Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 26, 121-128 https://doi.org/10.1038/s41594-018-0180-z
  37. Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA and Shi L (2015) What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 67, 198-213 https://doi.org/10.1124/pr.114.009944
  38. Peng Y, McCorvy JD, Harpsoe K et al (2018) 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719-730 e714
  39. Wacker D, Wang S, McCorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377-389 e312
  40. McCorvy JD, Wacker D, Wang S et al (2018) Structural determinants of 5-HT2B receptor activation and biased agonism. Nat Struct Mol Biol 25, 787-796 https://doi.org/10.1038/s41594-018-0116-7
  41. Gumpper RH, Fay JF and Roth BL (2022) Molecular insights into the regulation of constitutive activity by RNA editing of 5HT2C serotonin receptors. Cell Rep 40, 111211
  42. Grailhe R, Grabtree GW and Hen R (2001) Human 5-HT5 receptors: the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur J Pharmacol 418, 157-167 https://doi.org/10.1016/S0014-2999(01)00933-5
  43. Nelson D (2004) 5-HT5 receptors. CNS Neurol Disord Drug Targets 3, 53-58 https://doi.org/10.2174/1568007043482606
  44. Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111, 707-714 https://doi.org/10.1016/j.pharmthera.2005.12.006
  45. Levit Kaplan A, Strachan RT, Braz JM et al (2022) Structure-based design of a chemical probe set for the 5-HT5A serotonin receptor. J Med Chem 65, 4201-4217 https://doi.org/10.1021/acs.jmedchem.1c02031
  46. Tan Y, Xu P, Huang S et al (2022) Structural insights into the ligand binding and Gi coupling of serotonin receptor 5-HT5A. Cell Discov 8, 50
  47. Zhang S, Chen H, Zhang C et al (2022) Inactive and active state structures template selective tools for the human 5-HT5A receptor. Nat Struct Mol Biol 29, 677-687 https://doi.org/10.1038/s41594-022-00796-6
  48. Eglen RM, Wong EH, Dumuis A and Bockaert J (1995) Central 5-HT4 receptors. Trends Pharmacol Sci 16, 391-398 https://doi.org/10.1016/S0165-6147(00)89081-1
  49. Mitchell ES and Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108, 320-333 https://doi.org/10.1016/j.pharmthera.2005.05.001
  50. Guseva D, Wirth A and Ponimaskin E (2014) Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci 8, 306
  51. Roth BL, Craigo SC, Choudhary MS et al (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268, 1403-1410
  52. Kristiansen K, Kroeze WK, Willins DL et al (2000) A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a "salt-bridge disruption" mechanism. J Pharmacol Exp Ther 293, 735-746
  53. Katritch V, Cherezov V and Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33, 17-27 https://doi.org/10.1016/j.tips.2011.09.003
  54. Choudhary MS, Craigo S and Roth BL (1993) A single point mutation (Phe340-->Leu340) of a conserved phenylalanine abolishes 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]mesulergine but not [3H]ketanserin binding to 5-hydroxytryptamine2 receptors. Mol Pharmacol 43, 755-761
  55. Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J and Chattopadhyay A (2021) Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 13, 101-122 https://doi.org/10.1007/s12551-020-00772-8
  56. Naughton M, Mulrooney JB and Leonard BE (2000) A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol 15, 397-415 https://doi.org/10.1002/1099-1077(200008)15:6<397::AID-HUP212>3.0.CO;2-L
  57. Miyagi H, Asada H, Suzuki M et al (2020) The discovery of a new antibody for BRIL-fused GPCR structure determination. Sci Rep 10, 11669
  58. Cao D, Yu J, Wang H et al (2022) Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375, 403-411 https://doi.org/10.1126/science.abl8615
  59. Kim K, Che T, Panova O et al (2020) Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574-1588 e1519
  60. Kaplan AL, Confair DN, Kim K et al (2022) Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582-591 https://doi.org/10.1038/s41586-022-05258-z
  61. Ishchenko A, Wacker D, Kapoor M et al (2017) Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proc Natl Acad Sci U S A 114, 8223-8228 https://doi.org/10.1073/pnas.1700891114
  62. Pei Y, Wen X, Guo SC et al (2023) Structural insight into the selective agonist ST1936 binding of serotonin receptor 5-HT6. Biochem Biophys Res Commun 671, 327-334 https://doi.org/10.1016/j.bbrc.2023.05.126