DOI QR코드

DOI QR Code

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han (R&D Center, Institute of DYM SOLUTION Co., Ltd) ;
  • Jae-Shik Lee (Department of Chemical Engineering, Soonchunhyang University) ;
  • Dong-Hak Kim (Department of Chemical Engineering, Soonchunhyang University)
  • 투고 : 2023.06.12
  • 심사 : 2023.09.13
  • 발행 : 2023.11.01

초록

Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

키워드

과제정보

This study was performed with the support of KEIT in 2023. "Development of 345 kV Nano-technology EHV power cable with 24 mm insulation thickness to enhance cable competitiveness" (Project No.: 20003956).

참고문헌

  1. J. Hong, D. W. Park, and S. E. Shim, Macromol. Res., 20, 465 (2012).  doi: https://doi.org/10.1007/s13233-012-0066-6
  2. Y. Zhou, C. Yuan, C. Li, P. Meng, J. Hu, Q. Li, and J. He, IEEE Trans. Dielectr. Electr. Insul., 26, 1596 (2019).  doi: https://doi.org/10.1109/TDEI.2019.008198
  3. Y. Luo, G. Wang, B. Zhang, and Z. Zhang, Eur. Polym. J., 34, 1221 (1998)  doi: https://doi.org/10.1016/S0014-3057(98)00099-8
  4. X. Xu and T. Wang, Sci. Eng. Compos. Mater., 25, 715 (2017).  doi: https://doi.org/10.1515/secm-2016-0080
  5. S. Azizi E. David, M. F. Frechette, P. Nguyen-Tri, and C. M. Ouellet-Plamondon, Polym. Test., 72, 24 (2018).  doi: https://doi.org/10.1016/j.polymertesting.2018.09.031
  6. Y. Wei, M. Liu, X. Li, G. Li, N. Li, C. Hao, and Q. Lei, Inst. Eng. Technol., 6, 805 (2021).  doi: https://doi.org/10.1049/hve2.12089
  7. C. Dong, J. Compos. Sci., 5, 26 (2021).  doi: https://doi.org/10.3390/jcs5010026
  8. Z. Han and A. Fina, Progress in Polymer Science, 36, 914 (2011)  doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004
  9. T. Wang, X. Li, M. Liu, G. Li, W. Xiao, S. Chen, C. Hao, Y. Wei, M. Fu, and Q. Lei, Mater. Res. Express, 7, 125302 (2020). doi: https://doi.org/10.1088/2053-1591/abcf7b
  10. T. Szczegieliniak, D. Kusiak, and P. Jablonski, Energies, 14, 4164 (2021).  doi: https://doi.org/10.3390/en14144164
  11. D. He, T. Zhang, M. Ma, W. Gong, W. Wang, and Q. Li, J. Nanomater., 2020, 3968737 (2020).  doi: https://doi.org/10.1155/2020/3968737
  12. W. Zhu, X. Wang, A. Liang, Y. Zhao, X. Fan, and G. Liu, Proc. 2019 the 2nd annual International Conference on Mechanical Engineering and Materials (ICMEM 2019) (IOP Publishing Ltd, Guangzhou, China, 2019) p. 012001.  doi: https://doi.org/10.1088/1757-899X/746/1/012001
  13. M. Masuda, A. Ogata, M. Nitta, and T. Tani, Proc. 5th International Conference on Properties and Applications of Dielectric Materials (IEEE, Seoul, Korea, 1997).  doi: https://doi.org/10.1109/ICPADM.1997.617620
  14. J. C. Haung and C. L. Wu, Adv. Polym. Tech., 19, 132 (2000).  doi: https://doi.org/10.1002/(SICI)1098-2329(200022)19:2%3C132::AID-ADV6%3E3.0.CO;2-B
  15. L. Shen, Z. D. Lou, and Y. J. Qian, J. Polym. Sci., Part B: Polym. Phys., 45, 3078 (2007).  doi: https://doi.org/10.1002/polb.21307
  16. S. Azizi, E. David, M. F. Frechette, P. Nguyen-Tri, and C. M. Ouellet-Plamondon, J. Appl. Polym. Sci., 136, 47043 (2019).  doi: https://doi.org/10.1002/app.47043
  17. D. N. Bui and Y. Son, J. Korea Acad. Ind. Coop. Soc., 19, 13 (2018).  doi: https://doi.org/10.5762/KAIS.2018.19.9.13
  18. M. Traina, A. Pegoretti, and A. Penati, J. Appl. Polym. Sci., 106, 2065 (2007).  doi: https://doi.org/10.1002/app.26444
  19. X. Lu, B. Kang, and S. Shi, Polymers, 11, 1583 (2019).  doi: https://doi.org/10.3390/polym11101583
  20. M. Wen, X. Sun, L. Su, J. Shen, J. Li, and S. Guo, Polymer, 53, 1602 (2012).  doi: https://doi.org/10.1016/j.polymer.2012.02.003
  21. Engineering ToolBox, Thermal Expansion - Linear Expansion Coefficients, https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html (2023).