DOI QR코드

DOI QR Code

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Sung Young Lee (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Chang Heon Choi (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Jong Min Park (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Jung-in Kim (Department of Radiation Oncology, Seoul National University Hospital)
  • 투고 : 2022.09.30
  • 심사 : 2023.05.16
  • 발행 : 2023.09.30

초록

Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (Grant No. 2021M2E8A1049195) and (Grant No. 2019K1A3A1A80113183).

참고문헌

  1. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378(9804):1727-1740. https://doi.org/10.1016/S0140-6736(10)62101-0
  2. Ettinger DS, Akerley W, Bepler G, Blum MG, Chang A, Cheney RT, et al. Non-small cell lung cancer. J Natl Compr Canc Netw. 2010;8(7):740-801. https://doi.org/10.6004/jnccn.2010.0056
  3. Brown S, Banfill K, Aznar MC, Whitehurst P, Faivre Finn C. The evolving role of radiotherapy in non-small cell lung cancer. Br J Radiol. 2019;92(1104):20190524.
  4. Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ, Senan S. Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol. 2010;28(35):5153-5159. https://doi.org/10.1200/JCO.2010.30.0731
  5. Lagerwaard FJ, Verstegen NE, Haasbeek CJ, Slotman BJ, Paul MA, Smit EF, et al. Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83(1):348-353. https://doi.org/10.1016/j.ijrobp.2011.06.2003
  6. Le Chevalier T, Arriagada R, Quoix E, Ruffie P, Martin M, Tarayre M, et al. Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non-small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst. 1991;83(6):417-423. https://doi.org/10.1093/jnci/83.6.417
  7. Finlayson E, Fan Z, Birkmeyer JD. Outcomes in octogenarians undergoing high-risk cancer operation: a national study. J Am Coll Surg. 2007;205(6):729-734. https://doi.org/10.1016/j.jamcollsurg.2007.06.307
  8. Solda F, Lodge M, Ashley S, Whitington A, Goldstraw P, Brada M. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer: systematic review and comparison with a surgical cohort. Radiother Oncol. 2013;109(1):1-7. https://doi.org/10.1016/j.radonc.2013.09.006
  9. Cao C, D'Amico T, Demmy T, Dunning J, Gossot D, Hansen H, et al. Surgery versus SABR for resectable non-small-cell lung cancer. Lancet Oncol. 2015;16(8):e370-e371. https://doi.org/10.1016/S1470-2045(15)00036-4
  10. Iyengar P, Westover K, Timmerman RD. Stereotactic ablative radiotherapy (SABR) for non-small cell lung cancer. Semin Respir Crit Care Med. 2013;34(6):845-854. https://doi.org/10.1055/s-0033-1358554
  11. Verstegen NE, Lagerwaard FJ, Haasbeek CJ, Slotman BJ, Senan S. Outcomes of stereotactic ablative radiotherapy following a clinical diagnosis of stage I NSCLC: comparison with a contemporaneous cohort with pathologically proven disease. Radiother Oncol. 2011;101(2):250-254. https://doi.org/10.1016/j.radonc.2011.09.017
  12. Abel S, Hasan S, White R, Schumacher L, Finley G, Colonias A, et al. Stereotactic ablative radiotherapy (SABR) in early stage non-small cell lung cancer: comparing survival outcomes in adenocarcinoma and squamous cell carcinoma. Lung Cancer. 2019;128:127-133. https://doi.org/10.1016/j.lungcan.2018.12.022
  13. Vlaskou Badra E, Baumgartl M, Fabiano S, Jongen A, Guckenberger M. Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Transl Lung Cancer Res. 2021;10(4):1930-1949. https://doi.org/10.21037/tcr-20-3107
  14. Goldsmith C, Gaya A. Stereotactic ablative body radiotherapy (SABR) for primary and secondary lung tumours. Cancer Imaging. 2012;12(2):351-360. https://doi.org/10.1102/1470-7330.2012.9015
  15. Park JM, Park SY, Kim HJ, Wu HG, Carlson J, Kim JI. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy. Radiother Oncol. 2016;120(2):279-285. https://doi.org/10.1016/j.radonc.2016.06.013
  16. Choi CH, Park SY, Kim JI, Kim JH, Kim K, Carlson J, et al. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2017;90(1070):20160652.
  17. Luterstein E, Cao M, Lamb JM, Raldow A, Low D, Steinberg ML, et al. Clinical outcomes using magnetic resonance-guided stereotactic body radiation therapy in patients with locally advanced cholangiocarcinoma. Adv Radiat Oncol. 2019;5(2):189-195. https://doi.org/10.1016/j.adro.2019.09.008
  18. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363-1376. https://doi.org/10.1088/0031-9155/50/7/002
  19. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909-923. https://doi.org/10.1088/0031-9155/53/4/006
  20. Esmaeeli AD, Pouladian M, Monfared AS, Mahdavi SR, Moslemi D. Effect of uniform magnetic field on dose distribution in the breast radiotherapy. Int J Radiat Res. 2014;12(2):151-160.
  21. Kim JI, Park SY, Lee YH, Shin KH, Wu HG, Park JM. Effect of low magnetic field on dose distribution in the partial-breast irradiation. Prog Med Phys. 2015;26(4):208-214. https://doi.org/10.14316/pmp.2015.26.4.208
  22. Son J, An HJ, Choi CH, Chie EK, Kim JH, Park JM, et al. Assessment of dose distributions according to low magnetic field effect for prostate SABR. J Radiat Prot Res. 2019;44(1):26-31. https://doi.org/10.14407/jrpr.2019.44.1.26
  23. Kataria T, Sharma K, Subramani V, Karrthick KP, Bisht SS. Homogeneity index: an objective tool for assessment of conformal radiation treatments. J Med Phys. 2012;37(4):207-213. https://doi.org/10.4103/0971-6203.103606
  24. Han G, Liu D, Gan H, Denniston KA, Li S, Tan W, et al. Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma. PLoS One. 2014;9(2):e90007.
  25. Son J, Chun M, An HJ, Kang SH, Chie EK, Yoon J, et al. Effect of low magnetic field on dose distribution in the SABR plans for liver cancer. Prog Med Phys. 2018;29(2):47-52. https://doi.org/10.14316/pmp.2018.29.2.47
  26. Oborn BM, Metcalfe PE, Butson MJ, Rosenfeld AB. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: effect of field size, surface orientation, magnetic field strength, and exit bolus. Med Phys. 2010;37(10):5208-5217. https://doi.org/10.1118/1.3488980
  27. Roberts DA, Sandin C, Vesanen PT, Lee H, Hanson IM, Nill S, et al. Machine QA for the Elekta unity system: a report from the Elekta MR-linac consortium. Med Phys. 2021;48(5):e67-e85. https://doi.org/10.1002/mp.14764
  28. Kubota T, Araki F, Ohno T. Comparison of dose distributions between transverse magnetic fields of 0.35 T and 1.5 T for radiotherapy in lung tumor using Monte Carlo calculation. Med Do-sim. 2020;45(2):179-185. https://doi.org/10.1016/j.meddos.2019.10.003