DOI QR코드

DOI QR Code

Effects of Fast Neutron Irradiation on Switching of Silicon Bipolar Junction Transistor

  • 투고 : 2023.02.27
  • 심사 : 2023.06.22
  • 발행 : 2023.09.30

초록

Background: When bipolar junction transistors (BJTs) are used as switches, their switching characteristics can be deteriorated because the recombination time of the minority carriers is long during turn-off transient. When BJTs operate as low frequency switches, the power dissipation in the on-state is large. However, when BJTs operate as high frequency switches, the power dissipation during switching transients increases rapidly. Materials and Methods: When silicon (Si) BJTs are irradiated by fast neutrons, defects occur in the Si bulk, shortening the lifetime of the minority carriers. Fast neutron irradiation mainly creates displacement damage in the Si bulk rather than a total ionization dose effect. Defects caused by fast neutron irradiation shorten the lifetime of minority carriers of BJTs. Furthermore, these defects change the switching characteristics of BJTs. Results and Discussion: In this study, experimental results on the switching characteristics of a pnp Si BJT before and after fast neutron irradiation are presented. The results show that the switching characteristics are improved by fast neutron irradiation, but power dissipation in the on-state is large when the fast neutrons are irradiated excessively. Conclusion: The switching characteristics of a pnp Si BJT were improved by fast neutron irradiation.

키워드

과제정보

This work was supported by the Korea government (MSIT) (1711078081).

참고문헌

  1. Baliga BJ. Fundamentals of power semiconductor devices. Springer: 2008.
  2. Bielejec E, Vizkelethy G, Fleming RM, King DB. Metrics for comparison between displacement damage due to ion beam and neutron irradiation in silicon BJTs. IEEE Trans Nucl Sci. 2007;54(6):2282-2287. https://doi.org/10.1109/TNS.2007.909513
  3. Tala-Ighil B, Trolet JL, Gualous H, Mary P, Lefebvre S. Experimental and comparative study of gamma radiation effects on Si-IGBT and SiC-JFET. Microelectron Reliab. 2015;55(9-10):1512-1516. https://doi.org/10.1016/j.microrel.2015.06.136
  4. Hayama K, Takakura K, Ohtani T, Kudou T, Ohyama H, Mercha A, et al. Radiation damage in proton-irradiated strained Si n-MOSFETs. Mater Sci Semicond Process. 2008;11(5-6):314-318. https://doi.org/10.1016/j.mssp.2008.09.008
  5. Fuochi PG. Irradiation of power semiconductor devices by high energy electrons: the Italian experience. Radiat Phys Chem. 1994;44(4):431-440. https://doi.org/10.1016/0969-806X(94)90084-1
  6. Hazdra P, Vobecky J, Brand K. Optimum lifetime structure in silicon power diodes by means of various irradiation techniques. Nucl Instrum Methods Phys Res B. 2002;186(1-4):414-418. https://doi.org/10.1016/S0168-583X(01)00898-9
  7. Hazdra P, Komarnitskyy V. Lifetime control in silicon power P-i-N diode by ion irradiation: suppression of undesired leakage. Microelectron J. 2006;37(3):197-203. https://doi.org/10.1016/j.mejo.2005.09.010
  8. Chee FP, Amir HFA, Salleh S. Defect generation in bipolar devices by ionizing radiation. ISOR J Appl Phys. 2014;6(3):92-101. https://doi.org/10.9790/4861-063192101
  9. Assaf J. Bulk and surface dameges in complementary bipolar junction transistors produced by high dose irradiation. Chin Phys B. 2018;27(1):016103.
  10. Meng XT, Yang HW, Kang GA, Wang JL, Jia HY, Chen PY, et al. Effects of neutron irradiation on SiGe HBT and Si BJT devices. J Mater Sci Mater Electron. 2003;14(4):199-203. https://doi.org/10.1023/A:1022977828563
  11. Oo MM, Rashid NKA, Karim JA, Zin MRM, Hasbullah NF. Neutron radiation effect on 2N2222 and NTE 123 NPN silicon bipolar junction transistors. IOP Conf Ser Mater Sci Eng. 2013;53:012013.
  12. Roldan JM, Ansley WE, Cressler JD, Clark SD, Nguyen-Ngoc D. Neutron radiation tolerance of advanced UHV/CVD SiGe HBT BiCMOS technology. IEEE Trans Nucl Sci. 1997;44(6):1965-1973. https://doi.org/10.1109/23.658970
  13. Siemieniec R, Lutz J. Possibilities and limits of axial lifetime control by radiation induced centers in fast recovery diodes. Microelectron J. 2004;35(3):259-267. https://doi.org/10.1016/S0026-2692(03)00191-5
  14. Soriano L, Valencia H, Sun K, Nelson R. Fast neutron irradiation effects on multiple gallium nitride (GaN) device reliability in presence of ambient variations. Proceeding of the 2020 IEEE International Reliability Physics Symposium (IRPS); 2020 Apr 28-30; Dallas, TX, USA.
  15. Ahn SH, Sun GM, Baek H, Jin SB, Hoang SM. Experimental study of fast neutron irradiation on Si transistor. Transactions of the Korean Nuclear Society Spring Meeting; 2016 May 11-13; Jeju, Korea.
  16. Bose BK. Evaluation of modern power semiconductor devices and future trends of converters. IEEE Trans Ind Appl. 1992;28(2):403-413. https://doi.org/10.1109/28.126749
  17. Streetman BG. Solid state electronic devices. 2nd ed. Prentice-Hall Inc.; 1980.
  18. Holmes-Siedle A, Adams L. Handbook of radiation effects. 2nd ed. Oxford University Press; 2007.
  19. Messenger GC. A summary review of displacement damage from high energy radiation in silicon semiconductors and semiconductor devices. IEEE Trans Nucl Sci. 1992;39(3):468-473. https://doi.org/10.1109/23.277547
  20. Shin JW, Bak SI, Ham C, In EJ, Kim DY, Min KJ, et al. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target. Nucl Instrum Methods Phys Res A. 2015;797:304-310. https://doi.org/10.1016/j.nima.2015.06.042