References
- T. Ashikaga and K. Konno, Global and local properties of pencils of algebraic curves, in Algebraic geometry 2000, Azumino (Hotaka), 1-49, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002. https://doi.org/10.2969/aspm/03610001
- W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4, Springer, Berlin, 2004. https://doi.org/10.1007/978-3-642-57739-0
- C. Gong, S. Kitagawa, and J. Lu, Extremal trigonal fibrations on rational surfaces, J. Math. Soc. Japan 73 (2021), no. 2, 505-524. https://doi.org/10.2969/jmsj/82438243
- C. Gong, J. Lu, and S. L. Tan, On families of complex curves over ℙ1 with two singular fibers, Osaka J. Math. 53 (2016), no. 1, 83-99. http://projecteuclid.org/euclid.ojm/1455892627
- C. Gong, X. Lu, and S. L. Tan, Families of curves over ℙ1 with 3 singular fibers, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 375-380. https://doi.org/10.1016/j.crma.2013.05.002
- C. Gong and W.-Y. Xu, On the Mordell-Weil rank of a surface fibration, Comm. Algebra 48 (2020), no. 2, 724-732. https://doi.org/10.1080/00927872.2019.1659286
- S. Kitagawa, Extremal hyperelliptic fibrations on rational surfaces, Saitama Math. J. 30 (2013), 1-14 (2013).
- S. Kitagawa and K. Konno, Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Z. 251 (2005), no. 1, 179-204. https://doi.org/10.1007/s00209-005-0797-6
- K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111-152. https://doi.org/10.2307/1969881
- J. Lu and S. L. Tan, Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3373-3396. https://doi.org/10.1090/S0002-9947-2012-05625-X
- J. Lu, S. Tan, F. Yu, and K. Zuo, A new inequality on the Hodge number h1,1 of algebraic surfaces, Math. Z. 276 (2014), no. 1-2, 543-555. https://doi.org/10.1007/s00209-013-1212-3
- K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 83-99.
- T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211-240.
- T. Shioda, Mordell-Weil lattices for higher genus fibration, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 247-250. http://projecteuclid.org/euclid.pja/1195511629
- T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, in New trends in algebraic geometry (Warwick, 1996), 359-373, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511721540.015
- N. K. Viet, On certain Mordell-Weil lattices of hyperelliptic type on rational surfaces, J. Math. Sci. (New York) 102 (2000), no. 2, 3938-3977. https://doi.org/10.1007/BF02984108