DOI QR코드

DOI QR Code

ON THE DETERMINANT OF A DUAL PERIODIC SINGULAR FIBER

  • Cheng Gong (Department of Mathematics Soochow University) ;
  • Jun Lu (Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University) ;
  • Sheng-Li Tan (Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University)
  • Received : 2022.10.11
  • Accepted : 2023.02.24
  • Published : 2023.09.30

Abstract

Let F be a periodic singular fiber of genus g with dual fiber F*, and let T (resp. T*) be the set of the components of F (resp. F*) by removing one component with multiplicity one. We give a formula to compute the determinant | det T | of the intersect form of T. As a consequence, we prove that | det T | = | det T*|. As an application, we compute the Mordell-Weil group of a fibration f : S → ℙ1 of genus 2 with two singular fibers.

Keywords

References

  1. T. Ashikaga and K. Konno, Global and local properties of pencils of algebraic curves, in Algebraic geometry 2000, Azumino (Hotaka), 1-49, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002. https://doi.org/10.2969/aspm/03610001
  2. W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 4, Springer, Berlin, 2004. https://doi.org/10.1007/978-3-642-57739-0
  3. C. Gong, S. Kitagawa, and J. Lu, Extremal trigonal fibrations on rational surfaces, J. Math. Soc. Japan 73 (2021), no. 2, 505-524. https://doi.org/10.2969/jmsj/82438243
  4. C. Gong, J. Lu, and S. L. Tan, On families of complex curves over ℙ1 with two singular fibers, Osaka J. Math. 53 (2016), no. 1, 83-99. http://projecteuclid.org/euclid.ojm/1455892627
  5. C. Gong, X. Lu, and S. L. Tan, Families of curves over ℙ1 with 3 singular fibers, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 375-380. https://doi.org/10.1016/j.crma.2013.05.002
  6. C. Gong and W.-Y. Xu, On the Mordell-Weil rank of a surface fibration, Comm. Algebra 48 (2020), no. 2, 724-732. https://doi.org/10.1080/00927872.2019.1659286
  7. S. Kitagawa, Extremal hyperelliptic fibrations on rational surfaces, Saitama Math. J. 30 (2013), 1-14 (2013).
  8. S. Kitagawa and K. Konno, Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Z. 251 (2005), no. 1, 179-204. https://doi.org/10.1007/s00209-005-0797-6
  9. K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111-152. https://doi.org/10.2307/1969881
  10. J. Lu and S. L. Tan, Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3373-3396. https://doi.org/10.1090/S0002-9947-2012-05625-X
  11. J. Lu, S. Tan, F. Yu, and K. Zuo, A new inequality on the Hodge number h1,1 of algebraic surfaces, Math. Z. 276 (2014), no. 1-2, 543-555. https://doi.org/10.1007/s00209-013-1212-3
  12. K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991), no. 1, 83-99.
  13. T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211-240.
  14. T. Shioda, Mordell-Weil lattices for higher genus fibration, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 9, 247-250. http://projecteuclid.org/euclid.pja/1195511629
  15. T. Shioda, Mordell-Weil lattices for higher genus fibration over a curve, in New trends in algebraic geometry (Warwick, 1996), 359-373, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511721540.015
  16. N. K. Viet, On certain Mordell-Weil lattices of hyperelliptic type on rational surfaces, J. Math. Sci. (New York) 102 (2000), no. 2, 3938-3977. https://doi.org/10.1007/BF02984108